Organoids model distinct Vitamin E effects at different stages of prostate cancer evolution

Vitamin E increased prostate cancer risk in the Selenium and Vitamin E Cancer Prevention Trial (SELECT) through unknown mechanisms while Selenium showed no efficacy. We determined the effects of the SELECT supplements on benign (primary), premalignant ( RWPE-1) and malignant (LNCaP) prostate epithel...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 16285 - 14
Main Authors Njoroge, Rose N., Unno, Kenji, Zhao, Jonathan C., Naseem, Anum F., Anker, Jonathan F., McGee, Warren A., Nonn, Larisa, Abdulkadir, Sarki A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.11.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Vitamin E increased prostate cancer risk in the Selenium and Vitamin E Cancer Prevention Trial (SELECT) through unknown mechanisms while Selenium showed no efficacy. We determined the effects of the SELECT supplements on benign (primary), premalignant ( RWPE-1) and malignant (LNCaP) prostate epithelial organoids. While the supplements decreased proliferation and induced cell death in cancer organoids, they had no effect on the benign organoids. In contrast, Vitamin E enhanced cell proliferation and survival in the premalignant organoids in a manner that recapitulated the SELECT results. Indeed, while Vitamin E induced a pro-proliferative gene expression signature, Selenium alone or combined with Vitamin E produced an anti-proliferative signature. The premalignant organoids also displayed significant downregulation of glucose transporter and glycolytic gene expression pointing to metabolic alterations. Detached RWPE-1 cells had low ATP levels due to diminished glucose uptake and glycolysis which was rescued by Vitamin E through the activation of fatty acid oxidation (FAO). FAO inhibition abrogated the ATP rescue, diminished survival of the inner matrix detached cells, restoring the normal hollow lumen morphology in Vitamin E treated organoids. Organoid models therefore clarify the paradoxical findings from SELECT and demonstrate that Vitamin E promotes tumorigenesis in the early stages of prostate cancer evolution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-16459-2