Differentiation of low and high grade renal cell carcinoma on routine MRI with an externally validated automatic machine learning algorithm
Pre-treatment determination of renal cell carcinoma aggressiveness may help guide clinical decision-making. We aimed to differentiate low-grade (Fuhrman I–II) from high-grade (Fuhrman III–IV) renal cell carcinoma using radiomics features extracted from routine MRI. 482 pathologically confirmed renal...
Saved in:
Published in | Scientific reports Vol. 10; no. 1; p. 19503 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.11.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Pre-treatment determination of renal cell carcinoma aggressiveness may help guide clinical decision-making. We aimed to differentiate low-grade (Fuhrman I–II) from high-grade (Fuhrman III–IV) renal cell carcinoma using radiomics features extracted from routine MRI. 482 pathologically confirmed renal cell carcinoma lesions from 2008 to 2019 in a multicenter cohort were retrospectively identified. 439 lesions with information on Fuhrman grade from 4 institutions were divided into training and test sets with an 8:2 split for model development and internal validation. Another 43 lesions from a separate institution were set aside for independent external validation. The performance of TPOT (Tree-Based Pipeline Optimization Tool), an automatic machine learning pipeline optimizer, was compared to hand-optimized machine learning pipeline. The best-performing hand-optimized pipeline was a Bayesian classifier with Fischer Score feature selection, achieving an external validation ROC AUC of 0.59 (95% CI 0.49–0.68), accuracy of 0.77 (95% CI 0.68–0.84), sensitivity of 0.38 (95% CI 0.29–0.48), and specificity of 0.86 (95% CI 0.78–0.92). The best-performing TPOT pipeline achieved an external validation ROC AUC of 0.60 (95% CI 0.50–0.69), accuracy of 0.81 (95% CI 0.72–0.88), sensitivity of 0.12 (95% CI 0.14–0.30), and specificity of 0.97 (95% CI 0.87–0.97). Automated machine learning pipelines can perform equivalent to or better than hand-optimized pipeline on an external validation test non-invasively predicting Fuhrman grade of renal cell carcinoma using conventional MRI. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-76132-z |