Locking bandwidth of two laterally-coupled semiconductor lasers subject to optical injection

We report here for the first time (to our knowledge), a new and universal mechanism by which a two-element laser array is locked to external optical injection and admits stably injection-locked states within a nontrivial trapezoidal region. The rate equations for the system are studied both analytic...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; p. 109
Main Authors Li, Nianqiang, Susanto, H., Cemlyn, B. R., Henning, I. D., Adams, M. J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.01.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report here for the first time (to our knowledge), a new and universal mechanism by which a two-element laser array is locked to external optical injection and admits stably injection-locked states within a nontrivial trapezoidal region. The rate equations for the system are studied both analytically and numerically. We derive a simple mathematical expression for the locking conditions, which reveals that two parallel saddle-node bifurcation branches, not reported for conventional single lasers subject to optical injection, delimit the injection locking range and its width. Important parameters are the linewidth enhancement factor, the laser separation, and the frequency offset between the two laterally-coupled lasers; the influence of these parameters on locking conditions is explored comprehensively. Our analytic approximations are validated numerically by using a path continuation technique as well as direct numerical integration of the rate equations. More importantly, our results are not restricted by waveguiding structures and uncover a generic locking behavior in the lateral arrays in the presence of injection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-18379-7