HPLC-ESI- MS/MS analysis of beet (Beta vulgaris) leaves and its beneficial properties in type 1 diabetic rats

[Display omitted] The phenolic profile of the leaves of Beta vulgaris subspecies vulgaris variety rubra was investigated by high-performance liquid chromatography (HPLC) coupled to electrospray ionization high resolution mass spectrometric (ESI-HRMS-MS) detection. Mass spectrometry-based molecular n...

Full description

Saved in:
Bibliographic Details
Published inBiomedicine & pharmacotherapy Vol. 120; p. 109541
Main Authors Abd El-Ghffar, Eman A., Hegazi, Nesrine M., Saad, Hamada H., Soliman, Mohamed M., El-Raey, Mohamed A., Shehata, Safia M., Barakat, Alaa, Yasri, Aziz, Sobeh, Mansour
Format Journal Article
LanguageEnglish
Published France Elsevier Masson SAS 01.12.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] The phenolic profile of the leaves of Beta vulgaris subspecies vulgaris variety rubra was investigated by high-performance liquid chromatography (HPLC) coupled to electrospray ionization high resolution mass spectrometric (ESI-HRMS-MS) detection. Mass spectrometry-based molecular networking was employed to dereplicate the known compounds. Twelve known compounds, seven of which are previously undescribed as constituents in the B. vulgaris leaves were dereplicated and assigned with various levels of identification confidence. The ameliorative effects of the aqueous methanolic extract of the leaves were assessed against alloxan induced diabetic rats. It was found that the extract significantly decreased (p < 0.001) serum glucose, lipid profile, ALT, AST, TNF-α, IL-1β, IL-6, and hepatic MDA levels; and significantly increased (p < 0.001) hepatic TAO and GSH; and down-regulated the expression of hepatic NF-κB versus the untreated diabetic groups, in a dose-dependent manner. In molecular docking, all identified compounds exhibited good glide score against the PPAR-ɣ target, confirming the in vivo observed activities. In conclusion, B. vulgaris has immunomodulatory / antioxidant effects that could be helpful in slowing the progression of diabetic complications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2019.109541