Mechanical activation of spike fosters SARS-CoV-2 viral infection
The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane...
Saved in:
Published in | Cell research Vol. 31; no. 10; pp. 1047 - 1060 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.10.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike’s S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike’s receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~10
3
times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 10
6
times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion. |
---|---|
AbstractList | The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike’s S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike’s receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~10
3
times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 10
6
times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion. The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike's S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike's receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~10 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 10 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion. The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike's S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike's receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~103 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 106 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion.The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike's S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike's receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~103 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 106 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion. The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike’s S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike’s receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~103 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 106 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion. |
Author | Mudianto, Tenny Ye, Yang Sun, Qiming Fei, Panyu Yao, Danmei Wang, Jun Li, Zhenhai Chen, Wei Zhang, Jing Zhang, Xinrui Chen, Hui Lu, Qiao Xiao, Chuxuan Xie, Qi Wang, Pei-Hui Lou, Jizhong Hu, Wei Gao, Yufei Liu, Jia Zhang, Tongtong Zhang, Yong |
Author_xml | – sequence: 1 givenname: Wei surname: Hu fullname: Hu, Wei organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine – sequence: 2 givenname: Yong surname: Zhang fullname: Zhang, Yong organization: Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences – sequence: 3 givenname: Panyu surname: Fei fullname: Fei, Panyu organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, School of Mechanical Engineering, Zhejiang University – sequence: 4 givenname: Tongtong surname: Zhang fullname: Zhang, Tongtong organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine – sequence: 5 givenname: Danmei surname: Yao fullname: Yao, Danmei organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine – sequence: 6 givenname: Yufei surname: Gao fullname: Gao, Yufei organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, School of Mechanical Engineering, Zhejiang University – sequence: 7 givenname: Jia surname: Liu fullname: Liu, Jia organization: Department of Pathology, New York University Grossman School of Medicine, The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health – sequence: 8 givenname: Hui surname: Chen fullname: Chen, Hui organization: Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences – sequence: 9 givenname: Qiao surname: Lu fullname: Lu, Qiao organization: Department of Pathology, New York University Grossman School of Medicine, The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health – sequence: 10 givenname: Tenny surname: Mudianto fullname: Mudianto, Tenny organization: Department of Pathology, New York University Grossman School of Medicine – sequence: 11 givenname: Xinrui surname: Zhang fullname: Zhang, Xinrui organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine – sequence: 12 givenname: Chuxuan surname: Xiao fullname: Xiao, Chuxuan organization: Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University – sequence: 13 givenname: Yang surname: Ye fullname: Ye, Yang organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 14 givenname: Qiming orcidid: 0000-0003-4988-9886 surname: Sun fullname: Sun, Qiming organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine – sequence: 15 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University – sequence: 16 givenname: Qi surname: Xie fullname: Xie, Qi organization: Westlake Institute for Advanced Study, School of Life Sciences, Westlake University – sequence: 17 givenname: Pei-Hui surname: Wang fullname: Wang, Pei-Hui organization: Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University – sequence: 18 givenname: Jun surname: Wang fullname: Wang, Jun email: jun.wang@nyulangone.org organization: Department of Pathology, New York University Grossman School of Medicine, The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health – sequence: 19 givenname: Zhenhai surname: Li fullname: Li, Zhenhai email: lizhshu@shu.edu.cn organization: Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University – sequence: 20 givenname: Jizhong orcidid: 0000-0003-4031-6125 surname: Lou fullname: Lou, Jizhong email: jlou@ibp.ac.cn organization: Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) – sequence: 21 givenname: Wei orcidid: 0000-0001-5366-7253 surname: Chen fullname: Chen, Wei email: jackweichen@zju.edu.cn organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34465913$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1OGzEUha2KqkDKC3SBRuqmG7f-H8-mUhRRqARCgsLW8njsYDqxU3sShbfHIQFKFqxs6X7n6Nx7DsFeiMEC8AWj7xhR-SMzzAiBiGCIEOcSrj6AA1wzCWtJ5V75I1RGApF9cJjzPUKEM44_gX3KmOANpgdgfGHNnQ7e6L7SZvBLPfgYquiqPPd_beViHmzK1fX46hpO4i0k1dKnAvvgrFmzn8FHp_tsj7bvCNz8OvkzOYPnl6e_J-NzaFjNBigIc1y0RvKS1LVdK3BjcCsdEa2l0jrTNbjRteNYd8y1jpqOYiaaru2MxpKOwM-N73zRzmxnbBhKDjVPfqbTg4raq7eT4O_UNC6VZEgIvjb4tjVI8d_C5kHNfDa273WwcZEV4UKWA-G6KejXHfQ-LlIo6xWqlkSwWtSFOv4_0UuU5-sWQG4Ak2LOyTpl_PB04BLQ9wojtS5SbYpUpUj1VKRaFSnZkT67vyuiG1EucJja9Br7HdUjytGw_A |
CitedBy_id | crossref_primary_10_1016_j_xcrp_2022_101048 crossref_primary_10_1021_jacs_4c04934 crossref_primary_10_1016_j_bbi_2021_12_007 crossref_primary_10_1007_s11831_025_10272_1 crossref_primary_10_1016_j_phymed_2022_154523 crossref_primary_10_1126_sciadv_abo5767 crossref_primary_10_1021_acs_jpclett_4c02598 crossref_primary_10_3390_biom12070964 crossref_primary_10_1088_1674_1056_ac98a2 crossref_primary_10_1093_jee_toac145 crossref_primary_10_1002_EXP_20230004 crossref_primary_10_1080_07391102_2022_2095305 crossref_primary_10_1016_j_bbi_2023_04_009 crossref_primary_10_3390_ijms26051903 crossref_primary_10_1002_smll_202310330 crossref_primary_10_3390_ijms231911542 crossref_primary_10_1039_D2CP01893D crossref_primary_10_1109_RBME_2024_3505073 crossref_primary_10_1371_journal_ppat_1012493 crossref_primary_10_1039_D3CP02042H crossref_primary_10_1021_acsinfecdis_2c00259 crossref_primary_10_1016_j_mbm_2023_100002 crossref_primary_10_1021_jacsau_3c00142 crossref_primary_10_1021_acs_jpcb_4c05060 crossref_primary_10_1016_j_reprotox_2022_04_011 crossref_primary_10_3390_v14102094 crossref_primary_10_1093_nar_gkac361 crossref_primary_10_3389_fbioe_2021_764516 crossref_primary_10_1021_acschembio_3c00050 crossref_primary_10_1016_j_vaccine_2023_06_086 |
Cites_doi | 10.1101/2020.08.25.267500 10.1038/nature24469 10.1038/s41422-020-00460-y 10.1371/journal.pone.0001082 10.1016/S0140-6736(20)30183-5 10.1126/science.abc5881 10.1146/annurev-virology-110615-042301 10.1146/annurev-biochem-060208-104626 10.1038/s41392-020-00460-9 10.1016/S1470-2045(11)70320-5 10.1038/s41586-020-2012-7 10.1038/s41586-020-2772-0 10.1016/0263-7855(96)00018-5 10.1073/pnas.1501430112 10.1126/science.1116480 10.1016/j.cell.2020.09.032 10.1093/bioinformatics/btg362 10.1529/biophysj.106.097048 10.1038/s41467-021-21118-2 10.1016/S0006-3495(83)84319-7 10.1039/C6NR07179A 10.1016/j.cell.2020.02.052 10.1038/s41586-020-2179-y 10.1063/1.470648 10.1038/nature02145 10.1021/acsnano.0c02618 10.1126/science.abf2303 10.1016/j.cell.2020.06.043 10.7554/eLife.65365 10.1146/annurev.physiol.68.072304.113102 10.3791/52975 10.1016/j.cell.2014.02.053 10.1002/jcc.20084 10.1038/s41586-020-2180-5 10.1038/s41586-021-03361-1 10.1056/NEJMoa2001316 10.1038/s41590-018-0259-z 10.1016/j.virusres.2012.06.008 10.1074/jbc.M111.325803 10.1126/science.1161748 10.1126/science.abd3255 10.1016/j.devcel.2012.04.005 10.1016/j.cell.2020.09.018 10.1016/j.bbagen.2016.06.010 10.1126/science.abc6952 10.1016/j.cell.2020.06.025 10.1021/jp973084f 10.1101/2020.09.09.287508 10.1126/science.abd4251 10.1103/PhysRevLett.107.098101 10.1016/j.chom.2020.11.004 10.1126/science.abd3072 10.1016/j.molcel.2018.12.018 10.1021/acs.nanolett.0c01360 10.1038/s41586-020-2665-2 10.1126/science.347575 10.1146/annurev.physiol.68.072304.114110 10.1073/pnas.0503879102 10.1126/science.abd0831 10.1126/science.abb2507 10.1101/2020.06.20.161323 10.1016/j.cell.2020.02.058 10.1371/journal.ppat.1007236 10.1073/pnas.2003138117 10.1016/j.cell.2020.03.045 10.1126/science.abe8499 10.1126/science.abd2985 10.1016/S0140-6736(20)30185-9 10.1038/s41590-019-0491-1 10.7554/eLife.46689 10.1002/jcc.20289 10.1093/cid/ciaa410 10.1038/s41586-020-2895-3 10.1038/cr.2016.152 10.1016/j.tim.2004.08.008 10.1038/nature08944 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/s41422-021-00558-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef ProQuest Central Student |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1748-7838 |
EndPage | 1060 |
ExternalDocumentID | PMC8406658 34465913 10_1038_s41422_021_00558_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of China, 2019YFA070700; National Natural Science Foundation of China, 11672317; Strategic Priority Research Program of the Chinese Academy of Sciences, XDB37020102 – fundername: Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, TP2018040 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11772348 funderid: https://doi.org/10.13039/501100001809 – fundername: Ministry of Science and Technology of China, 2017ZX10203205 National Natural Science Foundation of China, 31971237 Zhejiang University special scientific research fund for COVID-19 prevention and control, 2020XGZX077 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11772348 – fundername: ; – fundername: ; grantid: 11772348 |
GroupedDBID | --- -01 -0A -Q- -SA -S~ 0R~ 29B 2WC 36B 39C 3V. 4.4 406 53G 5GY 5VR 5XA 5XB 6J9 70F 7X7 88E 8FE 8FH 8FI 8FJ 92E 92I 92M 9D9 9DA AACDK AAHBH AANZL AASML AATNV AAXDM AAYZH AAZLF ABAKF ABAWZ ABJNI ABUWG ABZZP ACAOD ACGFO ACGFS ACIWK ACKTT ACMJI ACPRK ACRQY ACZOJ ADBBV ADFRT ADHDB AEFQL AEJRE AEMSY AENEX AESKC AEUYN AEVLU AEXYK AFBBN AFKRA AFRAH AFSHS AFUIB AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF AOIJS AXYYD BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C1A C6C CAG CAJEA CCEZO CCPQU CCVFK CHBEP COF CS3 CW9 DIK DNIVK DPUIP DU5 E3Z EBLON EBS EE. EIOEI EJD EMB EMOBN F5P FA0 FDQFY FERAY FIGPU FIZPM FSGXE FYUFA GX1 HCIFZ HMCUK HYE HZ~ IWAJR JSO JUIAU JZLTJ KQ8 LGEZI LK8 LOTEE M1P M7P NADUK NAO NQJWS NXXTH O9- OK1 P2P PQQKQ PROAC PSQYO Q-- Q-0 R-A RNS RNT RNTTT ROL RPM RT1 S.. SNX SNYQT SOHCF SOJ SRMVM SV3 SWTZT T8Q TAOOD TBHMF TCJ TDRGL TGP TR2 U1F U1G U5A U5K UKHRP WFFXF XSB ~88 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c474t-624f56bc85558fbdb619c1b8f26be38efcd919a7f51ad4fbf3cd31469dbdca183 |
IEDL.DBID | C6C |
ISSN | 1001-0602 1748-7838 |
IngestDate | Thu Aug 21 13:58:33 EDT 2025 Tue Aug 05 09:03:24 EDT 2025 Fri Jul 25 08:56:12 EDT 2025 Mon Jul 21 06:03:08 EDT 2025 Thu Apr 24 22:50:22 EDT 2025 Tue Jul 01 03:41:39 EDT 2025 Fri Feb 21 02:38:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-624f56bc85558fbdb619c1b8f26be38efcd919a7f51ad4fbf3cd31469dbdca183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4988-9886 0000-0003-4031-6125 0000-0001-5366-7253 |
OpenAccessLink | https://www.nature.com/articles/s41422-021-00558-x |
PMID | 34465913 |
PQID | 2578264767 |
PQPubID | 536307 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8406658 proquest_miscellaneous_2568254179 proquest_journals_2578264767 pubmed_primary_34465913 crossref_citationtrail_10_1038_s41422_021_00558_x crossref_primary_10_1038_s41422_021_00558_x springer_journals_10_1038_s41422_021_00558_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: England – name: London |
PublicationTitle | Cell research |
PublicationTitleAbbrev | Cell Res |
PublicationTitleAlternate | Cell Res |
PublicationYear | 2021 |
Publisher | Springer Singapore Nature Publishing Group |
Publisher_xml | – name: Springer Singapore – name: Nature Publishing Group |
References | Yi, Gao (CR34) 2017; 9 Zhu, Chen, Lou, Rittase, Li (CR20) 2019; 20 Baum (CR56) 2020; 369 Tschumperlin, Drazen (CR17) 2006; 68 Hou (CR45) 2020; 370 Barnes (CR57) 2020; 182 Zhang (CR46) 2021; 372 Li, Li, Farzan, Harrison (CR68) 2005; 309 Li (CR1) 2020; 382 Lan (CR32) 2020; 581 Bell (CR49) 1978; 200 Fiser, Sali (CR76) 2003; 19 Hoffmann (CR9) 2020; 181 Zhou (CR7) 2020; 579 Zhang (CR42) 2020; 11 Wang (CR6) 2021; 31 CR5 D’Agostino, Risselada, Lurick, Ungermann, Mayer (CR52) 2017; 551 Evans (CR79) 1983; 43 Song, Gui, Wang, Xiang (CR15) 2018; 14 Mateu (CR35) 2012; 168 Lv (CR55) 2020; 369 Meloty-Kapella, Shergill, Kuon, Botvinick, Weinmaster (CR22) 2012; 22 Lou, Zhu (CR59) 2007; 92 CR40 MacKerell (CR72) 1998; 102 Zhou (CR77) 2020; 28 Korber (CR38) 2020; 182 Wrapp (CR28) 2020; 367 Gao, Shi, Freund (CR23) 2005; 102 Wang, Horby, Hayden, Gao (CR2) 2020; 395 Phillips (CR71) 2005; 26 Cai (CR27) 2020; 369 Daniloski (CR47) 2021; 10 Huang (CR60) 2010; 464 Chu (CR37) 2020; 71 Pettersen (CR74) 2004; 25 Ke (CR31) 2020; 588 CR14 CR58 Wu, Peng, Wilken, Geraghty, Li (CR69) 2012; 287 Li (CR12) 2016; 3 Li (CR8) 2003; 426 Feller, Zhang, Pastor, Brooks (CR70) 1995; 103 Fredberg, Kamm (CR18) 2006; 68 Yao (CR30) 2020; 183 Yao, Lee, Waring, Wong, Hong (CR78) 2015; 112 Zhang, Kutateladze (CR54) 2020; 11 Cantuti-Castelvetri (CR3) 2020; 370 Wu (CR21) 2019; 73 Zhou (CR41) 2021; 592 An (CR64) 2020; 20 Hofmann, Pohlmann (CR10) 2004; 12 Yurkovetskiy (CR39) 2020; 183 Yao (CR67) 2016; 7 Luo, Kuang, Zhang, Song (CR36) 2016; 1860 Plante (CR44) 2021; 592 Chi (CR50) 2020; 369 Beniac, deVarennes, Andonov, He, Booth (CR13) 2007; 2 Toelzer (CR29) 2020; 370 Michaud, Boland, Rabi (CR43) 2020 Chen (CR65) 2012; 13 Hu (CR63) 2019; 8 Sudhof, Rothman (CR51) 2009; 323 Gui (CR75) 2017; 27 Shang (CR24) 2020; 581 Hong (CR66) 2018; 19 Wang (CR25) 2020; 181 Humphrey, Dalke, Schulten (CR73) 1996; 14 Daly (CR4) 2020; 370 Huang (CR16) 2020; 395 CR61 Huang (CR19) 2020; 14 Walls (CR26) 2020; 181 Liu, Chen, Evavold, Zhu (CR62) 2014; 157 Shang (CR11) 2020; 117 Yi, Shi, Gao (CR33) 2011; 107 Ozono (CR48) 2021; 12 Mercer, Schelhaas, Helenius (CR53) 2010; 79 H Huang (558_CR19) 2020; 14 J Lan (558_CR32) 2020; 581 WA Michaud (558_CR43) 2020 558_CR61 L Meloty-Kapella (558_CR22) 2012; 22 C Toelzer (558_CR29) 2020; 370 C Huang (558_CR16) 2020; 395 Q Li (558_CR1) 2020; 382 Y Cai (558_CR27) 2020; 369 F Li (558_CR68) 2005; 309 C An (558_CR64) 2020; 20 M Yao (558_CR67) 2016; 7 H Yao (558_CR30) 2020; 183 GI Bell (558_CR49) 1978; 200 W Humphrey (558_CR73) 1996; 14 H Chu (558_CR37) 2020; 71 J Mercer (558_CR53) 2010; 79 F Li (558_CR12) 2016; 3 B Liu (558_CR62) 2014; 157 EA Evans (558_CR79) 1983; 43 TC Sudhof (558_CR51) 2009; 323 Q Wang (558_CR25) 2020; 181 S Ozono (558_CR48) 2021; 12 S Wang (558_CR6) 2021; 31 JA Plante (558_CR44) 2021; 592 A Baum (558_CR56) 2020; 369 K Wu (558_CR69) 2012; 287 YJ Hou (558_CR45) 2020; 370 JC Phillips (558_CR71) 2005; 26 558_CR5 A Fiser (558_CR76) 2003; 19 JL Daly (558_CR4) 2020; 370 L Cantuti-Castelvetri (558_CR3) 2020; 370 558_CR14 558_CR58 L Chen (558_CR65) 2012; 13 J Huang (558_CR60) 2010; 464 DJ Tschumperlin (558_CR17) 2006; 68 J Shang (558_CR11) 2020; 117 H Hofmann (558_CR10) 2004; 12 Z Lv (558_CR55) 2020; 369 EF Pettersen (558_CR74) 2004; 25 J Shang (558_CR24) 2020; 581 W Song (558_CR15) 2018; 14 X Yi (558_CR33) 2011; 107 MG Mateu (558_CR35) 2012; 168 558_CR40 HW Yao (558_CR78) 2015; 112 Y Zhang (558_CR54) 2020; 11 L Yurkovetskiy (558_CR39) 2020; 183 J Hong (558_CR66) 2018; 19 Z Ke (558_CR31) 2020; 588 M Gui (558_CR75) 2017; 27 X Yi (558_CR34) 2017; 9 M D’Agostino (558_CR52) 2017; 551 P Wu (558_CR21) 2019; 73 AC Walls (558_CR26) 2020; 181 D Wrapp (558_CR28) 2020; 367 L Zhang (558_CR42) 2020; 11 J Zhang (558_CR46) 2021; 372 H Gao (558_CR23) 2005; 102 SE Feller (558_CR70) 1995; 103 CO Barnes (558_CR57) 2020; 182 Z Daniloski (558_CR47) 2021; 10 AD MacKerell (558_CR72) 1998; 102 X Chi (558_CR50) 2020; 369 T Zhou (558_CR77) 2020; 28 B Korber (558_CR38) 2020; 182 M Hoffmann (558_CR9) 2020; 181 W Hu (558_CR63) 2019; 8 P Zhou (558_CR7) 2020; 579 J Lou (558_CR59) 2007; 92 C Wang (558_CR2) 2020; 395 JJ Fredberg (558_CR18) 2006; 68 W Li (558_CR8) 2003; 426 DR Beniac (558_CR13) 2007; 2 C Zhu (558_CR20) 2019; 20 Q Luo (558_CR36) 2016; 1860 B Zhou (558_CR41) 2021; 592 34616015 - Nat Cell Biol. 2021 Oct;23(10):1051 34588627 - Cell Res. 2021 Sep 29 |
References_xml | – volume: 19 start-page: 1379 year: 2018 end-page: 1390 ident: CR66 article-title: A TCR mechanotransduction signaling loop induces negative selection in the thymus publication-title: Nat. Immunol. – volume: 28 start-page: 867 year: 2020 end-page: 879 ident: CR77 article-title: Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains publication-title: Cell Host Microbe – volume: 10 start-page: e65365 year: 2021 ident: CR47 article-title: The D614G mutation in SARS-CoV-2 Spike increases transduction of multiple human cell types publication-title: Elife – volume: 181 start-page: 281 year: 2020 end-page: 292 ident: CR26 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell – volume: 592 start-page: 116 year: 2021 end-page: 121 ident: CR44 article-title: Spike mutation D614G alters SARS-CoV-2 fitness publication-title: Nature – volume: 1860 start-page: 1953 year: 2016 end-page: 1960 ident: CR36 article-title: Cell stiffness determined by atomic force microscopy and its correlation with cell motility publication-title: Biochim. Biophys. Acta General Subj. – volume: 20 start-page: 5133 year: 2020 end-page: 5140 ident: CR64 article-title: Ultra-stable biomembrane force probe for accurately determining slow dissociation kinetics of PD-1 blockade antibodies on single living cells publication-title: Nano Lett. – volume: 12 start-page: 466 year: 2004 end-page: 472 ident: CR10 article-title: Cellular entry of the SARS coronavirus publication-title: Trends Microbiol. – volume: 370 start-page: 1464 year: 2020 end-page: 1468 ident: CR45 article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo publication-title: Science – volume: 464 start-page: 932 year: 2010 end-page: 936 ident: CR60 article-title: The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness publication-title: Nature – volume: 168 start-page: 1 year: 2012 end-page: 22 ident: CR35 article-title: Mechanical properties of viruses analyzed by atomic force microscopy: a virological perspective publication-title: Virus Res. – volume: 9 start-page: 454 year: 2017 end-page: 463 ident: CR34 article-title: Kinetics of receptor-mediated endocytosis of elastic nanoparticles publication-title: Nanoscale – volume: 2 start-page: e1082 year: 2007 ident: CR13 article-title: Conformational reorganization of the SARS coronavirus spike following receptor binding: implications for membrane fusion publication-title: PLoS One – ident: CR61 – volume: 395 start-page: 497 year: 2020 end-page: 506 ident: CR16 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet – volume: 20 start-page: 1269 year: 2019 end-page: 1278 ident: CR20 article-title: Mechanosensing through immunoreceptors publication-title: Nat. Immunol. – ident: CR58 – volume: 183 start-page: 730 year: 2020 end-page: 738 ident: CR30 article-title: Molecular architecture of the SARS-CoV-2 virus publication-title: Cell – volume: 26 start-page: 1781 year: 2005 end-page: 1802 ident: CR71 article-title: Scalable molecular dynamics with NAMD publication-title: J. Comput. Chem. – volume: 103 start-page: 4613 year: 1995 end-page: 4621 ident: CR70 article-title: Constant pressure molecular dynamics simulation: the Langevin piston method publication-title: J. Chem. Phys. – volume: 73 start-page: 1015 year: 2019 end-page: 1027 ident: CR21 article-title: Mechano-regulation of peptide-MHC class I conformations determines TCR antigen recognition publication-title: Mol. Cell – volume: 370 start-page: 725 year: 2020 end-page: 730 ident: CR29 article-title: Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein publication-title: Science – volume: 369 start-page: 650 year: 2020 end-page: 655 ident: CR50 article-title: A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2 publication-title: Science – volume: 14 start-page: 3747 year: 2020 end-page: 3754 ident: CR19 article-title: COVID-19: a call for physical scientists and engineers publication-title: ACS Nano – volume: 157 start-page: 357 year: 2014 end-page: 368 ident: CR62 article-title: Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling publication-title: Cell – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: CR74 article-title: UCSF Chimera-a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 382 start-page: 1199 year: 2020 end-page: 1207 ident: CR1 article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia publication-title: N. Engl. J. Med. – volume: 183 start-page: 739 year: 2020 end-page: 751.e738 ident: CR39 article-title: Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant publication-title: Cell – volume: 8 start-page: e46689 year: 2019 ident: CR63 article-title: FcgammaRIIB-I232T polymorphic change allosterically suppresses ligand binding publication-title: Elife – volume: 112 start-page: 10926 year: 2015 end-page: 10931 ident: CR78 article-title: Viral fusion protein transmembrane domain adopts beta-strand structure to facilitate membrane topological changes for virus-cell fusion publication-title: Proc. Natl. Acad. Sci. USA – volume: 68 start-page: 507 year: 2006 end-page: 541 ident: CR18 article-title: Stress transmission in the lung: pathways from organ to molecule publication-title: Annu. Rev. Physiol. – volume: 369 start-page: 1586 year: 2020 end-page: 1592 ident: CR27 article-title: Distinct conformational states of SARS-CoV-2 spike protein publication-title: Science – volume: 107 start-page: 098101 year: 2011 ident: CR33 article-title: Cellular uptake of elastic nanoparticles publication-title: Phys. Rev. Lett. – volume: 19 start-page: 2500 year: 2003 end-page: 2501 ident: CR76 article-title: ModLoop: automated modeling of loops in protein structures publication-title: Bioinformatics – volume: 102 start-page: 9469 year: 2005 end-page: 9474 ident: CR23 article-title: Mechanics of receptor-mediated endocytosis publication-title: Proc. Natl. Acad. Sci. USA – volume: 369 start-page: 1014 year: 2020 end-page: 1018 ident: CR56 article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies publication-title: Science – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: CR7 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – ident: CR5 – volume: 117 start-page: 11727 year: 2020 end-page: 11734 ident: CR11 article-title: Cell entry mechanisms of SARS-CoV-2 publication-title: Proc. Natl. Acad. Sci. USA – volume: 323 start-page: 474 year: 2009 end-page: 477 ident: CR51 article-title: Membrane fusion: grappling with SNARE and SM proteins publication-title: Science – volume: 14 start-page: e1007236 year: 2018 ident: CR15 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. – volume: 551 start-page: 634 year: 2017 end-page: 638 ident: CR52 article-title: A tethering complex drives the terminal stage of SNARE-dependent membrane fusion publication-title: Nature – year: 2020 ident: CR43 article-title: The SARS-CoV-2 Spike mutation D614G increases entry fitness across a range of ACE2 levels, directly outcompetes the wild type, and is preferentially incorporated into trimers publication-title: bioRxiv doi: 10.1101/2020.08.25.267500 – volume: 182 start-page: 828 year: 2020 end-page: 842 ident: CR57 article-title: Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies publication-title: Cell – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: CR28 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: CR32 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature – volume: 22 start-page: 1299 year: 2012 end-page: 1312 ident: CR22 article-title: Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin publication-title: Dev. Cell – volume: 426 start-page: 450 year: 2003 end-page: 454 ident: CR8 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature – volume: 11 year: 2020 ident: CR54 article-title: Molecular structure analyses suggest strategies to therapeutically target SARS-CoV-2 publication-title: Nat. Commun. – ident: CR14 – volume: 200 start-page: 618 year: 1978 end-page: 627 ident: CR49 article-title: Models for the specific adhesion of cells to cells publication-title: Science – volume: 369 start-page: 1505 year: 2020 end-page: 1509 ident: CR55 article-title: Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody publication-title: Science – volume: 92 start-page: 1471 year: 2007 end-page: 1485 ident: CR59 article-title: A structure-based sliding-rebinding mechanism for catch bonds publication-title: Biophys. J. – volume: 14 start-page: 33 year: 1996 end-page: 83 ident: CR73 article-title: VMD: visual molecular dynamics publication-title: J. Mol. Graph. – volume: 581 start-page: 221 year: 2020 end-page: 224 ident: CR24 article-title: Structural basis of receptor recognition by SARS-CoV-2 publication-title: Nature – volume: 592 start-page: 122 year: 2021 end-page: 127 ident: CR41 article-title: SARS-CoV-2 spike D614G change enhances replication and transmission publication-title: Nature – volume: 181 start-page: 894 year: 2020 end-page: 904.e899 ident: CR25 article-title: Structural and functional basis of SARS-CoV-2 entry by using human ACE2 publication-title: Cell – volume: 309 start-page: 1864 year: 2005 end-page: 1868 ident: CR68 article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor publication-title: Science – volume: 181 start-page: 271 year: 2020 end-page: 280 ident: CR9 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell – volume: 395 start-page: 470 year: 2020 end-page: 473 ident: CR2 article-title: A novel coronavirus outbreak of global health concern publication-title: Lancet – ident: CR40 – volume: 79 start-page: 803 year: 2010 end-page: 833 ident: CR53 article-title: Virus entry by endocytosis publication-title: Annu. Rev. Biochem. – volume: 102 start-page: 3586 year: 1998 end-page: 3616 ident: CR72 article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins publication-title: J. Phys. Chem. B – volume: 588 start-page: 498 year: 2020 end-page: 502 ident: CR31 article-title: Structures and distributions of SARS-CoV-2 spike proteins on intact virions publication-title: Nature – volume: 370 start-page: 856 year: 2020 end-page: 860 ident: CR3 article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity publication-title: Science – volume: 13 start-page: 163 year: 2012 end-page: 171 ident: CR65 article-title: Concurrent chemoradiotherapy plus adjuvant chemotherapy versus concurrent chemoradiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 3 multicentre randomised controlled trial publication-title: Lancet Oncol. – volume: 287 start-page: 8904 year: 2012 end-page: 8911 ident: CR69 article-title: Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus publication-title: J. Biol. Chem. – volume: 43 start-page: 27 year: 1983 end-page: 30 ident: CR79 article-title: Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests publication-title: Biophys. J. – volume: 11 year: 2020 ident: CR42 article-title: SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity publication-title: Nat. Commun. – volume: 3 start-page: 237 year: 2016 end-page: 261 ident: CR12 article-title: Structure, function, and evolution of coronavirus spike proteins publication-title: Annu. Rev. Virol. – volume: 71 start-page: 1400 year: 2020 end-page: 1409 ident: CR37 article-title: Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19 publication-title: Clin. Infect. Dis. – volume: 7 year: 2016 ident: CR67 article-title: The mechanical response of talin publication-title: Nat. Commun. – volume: 31 start-page: 126 year: 2021 end-page: 140 ident: CR6 article-title: AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells publication-title: Cell Res. – volume: 27 start-page: 119 year: 2017 end-page: 129 ident: CR75 article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding publication-title: Cell Res. – volume: 68 start-page: 563 year: 2006 end-page: 583 ident: CR17 article-title: Chronic effects of mechanical force on airways publication-title: Annu. Rev. Physiol. – volume: 182 start-page: 812 year: 2020 end-page: 827 ident: CR38 article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus publication-title: Cell – volume: 12 start-page: 848 year: 2021 end-page: 848 ident: CR48 article-title: SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity publication-title: Nat. Commun. – volume: 370 start-page: 861 year: 2020 end-page: 865 ident: CR4 article-title: Neuropilin-1 is a host factor for SARS-CoV-2 infection publication-title: Science – volume: 372 start-page: 525 year: 2021 end-page: 530 ident: CR46 article-title: Structural impact on SARS-CoV-2 spike protein by D614G substitution publication-title: Science – volume: 551 start-page: 634 year: 2017 ident: 558_CR52 publication-title: Nature doi: 10.1038/nature24469 – volume: 31 start-page: 126 year: 2021 ident: 558_CR6 publication-title: Cell Res. doi: 10.1038/s41422-020-00460-y – volume: 2 start-page: e1082 year: 2007 ident: 558_CR13 publication-title: PLoS One doi: 10.1371/journal.pone.0001082 – volume: 395 start-page: 497 year: 2020 ident: 558_CR16 publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 369 start-page: 1505 year: 2020 ident: 558_CR55 publication-title: Science doi: 10.1126/science.abc5881 – volume: 11 year: 2020 ident: 558_CR42 publication-title: Nat. Commun. – year: 2020 ident: 558_CR43 publication-title: bioRxiv doi: 10.1101/2020.08.25.267500 – volume: 3 start-page: 237 year: 2016 ident: 558_CR12 publication-title: Annu. Rev. Virol. doi: 10.1146/annurev-virology-110615-042301 – volume: 79 start-page: 803 year: 2010 ident: 558_CR53 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060208-104626 – ident: 558_CR5 doi: 10.1038/s41392-020-00460-9 – volume: 13 start-page: 163 year: 2012 ident: 558_CR65 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(11)70320-5 – volume: 579 start-page: 270 year: 2020 ident: 558_CR7 publication-title: Nature doi: 10.1038/s41586-020-2012-7 – ident: 558_CR14 doi: 10.1038/s41586-020-2772-0 – volume: 14 start-page: 33 year: 1996 ident: 558_CR73 publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – volume: 112 start-page: 10926 year: 2015 ident: 558_CR78 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1501430112 – volume: 309 start-page: 1864 year: 2005 ident: 558_CR68 publication-title: Science doi: 10.1126/science.1116480 – volume: 183 start-page: 739 year: 2020 ident: 558_CR39 publication-title: Cell doi: 10.1016/j.cell.2020.09.032 – volume: 19 start-page: 2500 year: 2003 ident: 558_CR76 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg362 – volume: 92 start-page: 1471 year: 2007 ident: 558_CR59 publication-title: Biophys. J. doi: 10.1529/biophysj.106.097048 – volume: 12 start-page: 848 year: 2021 ident: 558_CR48 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21118-2 – volume: 43 start-page: 27 year: 1983 ident: 558_CR79 publication-title: Biophys. J. doi: 10.1016/S0006-3495(83)84319-7 – volume: 9 start-page: 454 year: 2017 ident: 558_CR34 publication-title: Nanoscale doi: 10.1039/C6NR07179A – volume: 181 start-page: 271 year: 2020 ident: 558_CR9 publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 581 start-page: 221 year: 2020 ident: 558_CR24 publication-title: Nature doi: 10.1038/s41586-020-2179-y – volume: 103 start-page: 4613 year: 1995 ident: 558_CR70 publication-title: J. Chem. Phys. doi: 10.1063/1.470648 – volume: 426 start-page: 450 year: 2003 ident: 558_CR8 publication-title: Nature doi: 10.1038/nature02145 – volume: 14 start-page: 3747 year: 2020 ident: 558_CR19 publication-title: ACS Nano doi: 10.1021/acsnano.0c02618 – volume: 372 start-page: 525 year: 2021 ident: 558_CR46 publication-title: Science doi: 10.1126/science.abf2303 – volume: 182 start-page: 812 year: 2020 ident: 558_CR38 publication-title: Cell doi: 10.1016/j.cell.2020.06.043 – volume: 10 start-page: e65365 year: 2021 ident: 558_CR47 publication-title: Elife doi: 10.7554/eLife.65365 – volume: 68 start-page: 563 year: 2006 ident: 558_CR17 publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.68.072304.113102 – ident: 558_CR61 doi: 10.3791/52975 – volume: 157 start-page: 357 year: 2014 ident: 558_CR62 publication-title: Cell doi: 10.1016/j.cell.2014.02.053 – volume: 11 year: 2020 ident: 558_CR54 publication-title: Nat. Commun. – volume: 25 start-page: 1605 year: 2004 ident: 558_CR74 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 581 start-page: 215 year: 2020 ident: 558_CR32 publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 592 start-page: 122 year: 2021 ident: 558_CR41 publication-title: Nature doi: 10.1038/s41586-021-03361-1 – volume: 382 start-page: 1199 year: 2020 ident: 558_CR1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001316 – volume: 19 start-page: 1379 year: 2018 ident: 558_CR66 publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0259-z – volume: 7 year: 2016 ident: 558_CR67 publication-title: Nat. Commun. – volume: 168 start-page: 1 year: 2012 ident: 558_CR35 publication-title: Virus Res. doi: 10.1016/j.virusres.2012.06.008 – volume: 287 start-page: 8904 year: 2012 ident: 558_CR69 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.325803 – volume: 323 start-page: 474 year: 2009 ident: 558_CR51 publication-title: Science doi: 10.1126/science.1161748 – volume: 370 start-page: 725 year: 2020 ident: 558_CR29 publication-title: Science doi: 10.1126/science.abd3255 – volume: 22 start-page: 1299 year: 2012 ident: 558_CR22 publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.04.005 – volume: 183 start-page: 730 year: 2020 ident: 558_CR30 publication-title: Cell doi: 10.1016/j.cell.2020.09.018 – volume: 1860 start-page: 1953 year: 2016 ident: 558_CR36 publication-title: Biochim. Biophys. Acta General Subj. doi: 10.1016/j.bbagen.2016.06.010 – volume: 369 start-page: 650 year: 2020 ident: 558_CR50 publication-title: Science doi: 10.1126/science.abc6952 – volume: 182 start-page: 828 year: 2020 ident: 558_CR57 publication-title: Cell doi: 10.1016/j.cell.2020.06.025 – volume: 102 start-page: 3586 year: 1998 ident: 558_CR72 publication-title: J. Phys. Chem. B doi: 10.1021/jp973084f – ident: 558_CR58 doi: 10.1101/2020.09.09.287508 – volume: 369 start-page: 1586 year: 2020 ident: 558_CR27 publication-title: Science doi: 10.1126/science.abd4251 – volume: 107 start-page: 098101 year: 2011 ident: 558_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.098101 – volume: 28 start-page: 867 year: 2020 ident: 558_CR77 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.11.004 – volume: 370 start-page: 861 year: 2020 ident: 558_CR4 publication-title: Science doi: 10.1126/science.abd3072 – volume: 73 start-page: 1015 year: 2019 ident: 558_CR21 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.12.018 – volume: 20 start-page: 5133 year: 2020 ident: 558_CR64 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01360 – volume: 588 start-page: 498 year: 2020 ident: 558_CR31 publication-title: Nature doi: 10.1038/s41586-020-2665-2 – volume: 200 start-page: 618 year: 1978 ident: 558_CR49 publication-title: Science doi: 10.1126/science.347575 – volume: 68 start-page: 507 year: 2006 ident: 558_CR18 publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.68.072304.114110 – volume: 102 start-page: 9469 year: 2005 ident: 558_CR23 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0503879102 – volume: 369 start-page: 1014 year: 2020 ident: 558_CR56 publication-title: Science doi: 10.1126/science.abd0831 – volume: 367 start-page: 1260 year: 2020 ident: 558_CR28 publication-title: Science doi: 10.1126/science.abb2507 – ident: 558_CR40 doi: 10.1101/2020.06.20.161323 – volume: 181 start-page: 281 year: 2020 ident: 558_CR26 publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 14 start-page: e1007236 year: 2018 ident: 558_CR15 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007236 – volume: 117 start-page: 11727 year: 2020 ident: 558_CR11 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2003138117 – volume: 181 start-page: 894 year: 2020 ident: 558_CR25 publication-title: Cell doi: 10.1016/j.cell.2020.03.045 – volume: 370 start-page: 1464 year: 2020 ident: 558_CR45 publication-title: Science doi: 10.1126/science.abe8499 – volume: 370 start-page: 856 year: 2020 ident: 558_CR3 publication-title: Science doi: 10.1126/science.abd2985 – volume: 395 start-page: 470 year: 2020 ident: 558_CR2 publication-title: Lancet doi: 10.1016/S0140-6736(20)30185-9 – volume: 20 start-page: 1269 year: 2019 ident: 558_CR20 publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0491-1 – volume: 8 start-page: e46689 year: 2019 ident: 558_CR63 publication-title: Elife doi: 10.7554/eLife.46689 – volume: 26 start-page: 1781 year: 2005 ident: 558_CR71 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20289 – volume: 71 start-page: 1400 year: 2020 ident: 558_CR37 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciaa410 – volume: 592 start-page: 116 year: 2021 ident: 558_CR44 publication-title: Nature doi: 10.1038/s41586-020-2895-3 – volume: 27 start-page: 119 year: 2017 ident: 558_CR75 publication-title: Cell Res. doi: 10.1038/cr.2016.152 – volume: 12 start-page: 466 year: 2004 ident: 558_CR10 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2004.08.008 – volume: 464 start-page: 932 year: 2010 ident: 558_CR60 publication-title: Nature doi: 10.1038/nature08944 – reference: 34588627 - Cell Res. 2021 Sep 29;: – reference: 34616015 - Nat Cell Biol. 2021 Oct;23(10):1051 |
SSID | ssj0025451 |
Score | 2.5133538 |
Snippet | The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1047 |
SubjectTerms | 631/337 631/535 ACE2 Angiotensin-converting enzyme 2 Angiotensin-Converting Enzyme 2 - chemistry Angiotensin-Converting Enzyme 2 - metabolism Antibodies Antibodies, Neutralizing - immunology Binding Binding Sites Biomechanics Biomedical and Life Sciences Blocking antibodies Cell Biology Cell membranes Coronaviruses COVID-19 COVID-19 - diagnosis COVID-19 - therapy COVID-19 - virology COVID-19 Serotherapy Humans Hydrogen-Ion Concentration Immunization, Passive Life Sciences Locking Molecular Dynamics Simulation Pandemics Protein Binding Protein Domains - immunology Protein Subunits - chemistry Protein Subunits - immunology Protein Subunits - metabolism Receptors SARS-CoV-2 - isolation & purification SARS-CoV-2 - metabolism Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - immunology Spike Glycoprotein, Coronavirus - metabolism Spike protein Tensile Strength Viral diseases Viral infections Virus Internalization |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-sUuiLVPsVq7KFvrWLTXazyT6VQyoi6IPWcm8h-0WlkpzmBP3vndkkd1xF3wK7Idmd2dn5-M0MwFct0GjAmx3Pt6q5LELOtfvheW7yIhhkCBXzK07P1PGlPJnm08Hh1g2wylEmRkHtWks-8gNiLby8C1X8nN1w6hpF0dWhhcYr2KDSZQTpKqZLgwu1g2hwRdiQIiTPTp9mXh50kpwfnAAKVIaq5PerF9MTbfMpaPK_yGm8kI7ewuagSbJJT_otWPPNNrzue0s-vIPJqaekXqIBo-SF3vXK2sC62dU_zwJld9x27GJyfsEP2z88Y4T3vWYjPKt5D5dHv34fHvOhXwK3spBzrjIZcmVsSTW8gnEGjSObmjJkynhR-mCdTnWN9EhrJ4MJwjqBklI742yNZ_sDrDdt4z8BU1ZKr2vjau2kxsdMKqmtkFLYGmmYQDpuVmWHYuLU0-K6ikFtUVb9Ble4wVXc4Oo-gW-Ld2Z9KY0XZ--ONKiGY9VVSyZI4MtiGA8ERTnqxrd3NEeR1YuCJoGPPckWnxNUHk6nIoFihZiLCVRse3Wkufobi26jIaxQW0vg-0j25W89v4qdl1fxGd5kxIIRHLgL6_PbO7-HSs7c7EdOfgR6e_eB priority: 102 providerName: ProQuest |
Title | Mechanical activation of spike fosters SARS-CoV-2 viral infection |
URI | https://link.springer.com/article/10.1038/s41422-021-00558-x https://www.ncbi.nlm.nih.gov/pubmed/34465913 https://www.proquest.com/docview/2578264767 https://www.proquest.com/docview/2568254179 https://pubmed.ncbi.nlm.nih.gov/PMC8406658 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB70RPCltNVqrvbYgm_t0ia72WQfr4ciBaVoLfcWsr_wUHLinVD_e2c2l5SrbaFvgWySzczO7MzuN98CHGmBSQPO7GjfquayCDnX7rPnucmLYHBAqFhfcXauTq_k12k-3YCsq4WJoP1IaRnddIcO-7SQtFjBCVBAtFElx7hxi6jbaVRP1KRPsjAiiElWhAopQu8M29Ly8g_vWJ-MnkWYz4GSv-2Wxkno5CW8WEWPbNz29xVs-OY1bLfnST7uwvjMUyEvyZ1RwUK73MrmgS3uZjeeBarouF-wy_HFJZ_Mf_CMEcb3lnWQrGYPrk6Ov09O-eqMBG5lIZdcZTLkytiSeLuCcQYTIpuaMmTKeFH6YJ1OdY06SGsngwnCOoHeUTvjbI32_AYGzbzxB8CUldLr2rhaO6nxMpNKaiukFLZGvSWQdsKq7IpAnM6xuK3iRrYoq1bAFQq4igKufibwoX_mrqXP-Gfrw04H1cqUFhX5FIzaCoUdeN_fRiOgnY268fMHaqMo00XnksB-q7L-c4Io4XQqEijWlNk3IILt9TvN7DoSbWPyqzBCS-Bjp_Zf3fr7Xwz_r_lb2MloSEaA4CEMlvcP_h0GOkszgs1iWoxg68vx-beLURznTw9W-B4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtQwcFS2QvCCuEkpYCR4AqskdpzkAaGltNrS7gr1QH1L40tUVMnS3Yr2p_hGZnJVS0Xf-hbJTmLP5RnPBfAmE2g04MmO_K0KLhMf88x-cDzWceI1EoSq8yvGEzU6kF8P48Ml-NPlwlBYZScTa0FtK0N35GtEWnh4Jyr5NP3FqWsUeVe7FhoNWWy7i99oss0-bn1B_L6Nos2N_fURb7sKcCMTOecqkj5W2qRU6cprq9GEMKFOfaS0E6nzxmZhVuCqw8JKr70wVqA8yay2pkAOwO_egmUp0JQZwPLnjcm33d7EQ32kNvHqQCVFsUMrTWJ7ujaTdN3CKSSCCl-l_HzxKLyi314N0_zHV1sfgZv34V6ru7JhQ2wPYMmVD-F2083y4hEMx47SiAnrjNIlmsteVnk2mx7_dMxTPsnpjO0Nd_f4evWdR4wijE9YFxBWPoaDG4HlExiUVemeAVNGSpcV2haZlRk-RlLJzAgphSmQagIIO2Dlpi1fTl00TvLajS7SvAFwjgDOawDn5wG869-ZNsU7rp292uEgbxl5ll-SXQCv-2FkQfKrFKWrzmiOIjsbRVsATxuU9b8TVJAuC0UAyQIy-wlU3ntxpDz-UZf5RtNboX4YwPsO7ZfL-v8uVq7fxSu4M9of7-Q7W5Pt53A3InKsQxNXYTA_PXMvUMWa65ctXTM4umlW-guT-Tf7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJuUAkGCE1hLYseJDwitWlYtpRWiFO0txC9RtUq23a1o_xq_jhkn2dVS0VtvkeI8PA97xvPNDMBrxdFpwJ0d9VtWTOQ-Y8q-dyzTWe41CoQM-RW7e3LrQHweZ-MV-NPnwhCssl8Tw0JtG0Nn5AMSLdy8c5kPfAeL-Lo5-jg5YdRBiiKtfTuNVkR23MVvdN-mH7Y3kddv0nT06fvGFus6DDAjcjFjMhU-k9oUVPXKa6vRnTCJLnwqteOF88aqRFU4g6SywmvPjeW4tiirralQG_C9N-BmzrOEdCwfL5w9tEyCsxcgS5JQRGttinsxmAo6eGEEjqASWAU7X94UL1m6lwGb_0Rtw2Y4ugd3Oys2HrZidx9WXP0AbrV9LS8ewnDXUUIx8T-mxIn22DdufDydHB652FNmyek03h9-22cbzQ-WxoQ1Po57aFj9CA6uhZKPYbVuavcUYmmEcKrStlJWKLxMhRTKcCG4qVB-Ikh6YpWmK2RO_TSOyxBQ50XZErhEApeBwOV5BG_nz0zaMh5Xjl7veVB2Kj0tFwIYwav5bVRGirBUtWvOaIwkjxsXuQietCybf45TaTqV8AjyJWbOB1Ch7-U79eGvUPAbnXCJlmIE73q2L37r_7NYu3oWL-E2KlD5ZXtv5xncSUkaA0ZxHVZnp2fuOdpaM_0iCHUMP69bi_4Csyo6yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+activation+of+spike+fosters+SARS-CoV-2+viral+infection&rft.jtitle=Cell+research&rft.au=Hu%2C+Wei&rft.au=Zhang%2C+Yong&rft.au=Fei%2C+Panyu&rft.au=Zhang%2C+Tongtong&rft.date=2021-10-01&rft.eissn=1748-7838&rft.volume=31&rft.issue=10&rft.spage=1047&rft_id=info:doi/10.1038%2Fs41422-021-00558-x&rft_id=info%3Apmid%2F34465913&rft.externalDocID=34465913 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0602&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0602&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0602&client=summon |