Mechanical activation of spike fosters SARS-CoV-2 viral infection

The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane...

Full description

Saved in:
Bibliographic Details
Published inCell research Vol. 31; no. 10; pp. 1047 - 1060
Main Authors Hu, Wei, Zhang, Yong, Fei, Panyu, Zhang, Tongtong, Yao, Danmei, Gao, Yufei, Liu, Jia, Chen, Hui, Lu, Qiao, Mudianto, Tenny, Zhang, Xinrui, Xiao, Chuxuan, Ye, Yang, Sun, Qiming, Zhang, Jing, Xie, Qi, Wang, Pei-Hui, Wang, Jun, Li, Zhenhai, Lou, Jizhong, Chen, Wei
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.10.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike’s S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike’s receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~10 3 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 10 6 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion.
AbstractList The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike’s S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike’s receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~10 3 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 10 6 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion.
The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike's S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike's receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~10 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 10 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion.
The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike's S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike's receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~103 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 106 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion.The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike's S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike's receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~103 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 106 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion.
The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike’s S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike’s receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~103 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 106 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion.
Author Mudianto, Tenny
Ye, Yang
Sun, Qiming
Fei, Panyu
Yao, Danmei
Wang, Jun
Li, Zhenhai
Chen, Wei
Zhang, Jing
Zhang, Xinrui
Chen, Hui
Lu, Qiao
Xiao, Chuxuan
Xie, Qi
Wang, Pei-Hui
Lou, Jizhong
Hu, Wei
Gao, Yufei
Liu, Jia
Zhang, Tongtong
Zhang, Yong
Author_xml – sequence: 1
  givenname: Wei
  surname: Hu
  fullname: Hu, Wei
  organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine
– sequence: 2
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
  organization: Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences
– sequence: 3
  givenname: Panyu
  surname: Fei
  fullname: Fei, Panyu
  organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, School of Mechanical Engineering, Zhejiang University
– sequence: 4
  givenname: Tongtong
  surname: Zhang
  fullname: Zhang, Tongtong
  organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine
– sequence: 5
  givenname: Danmei
  surname: Yao
  fullname: Yao, Danmei
  organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine
– sequence: 6
  givenname: Yufei
  surname: Gao
  fullname: Gao, Yufei
  organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, School of Mechanical Engineering, Zhejiang University
– sequence: 7
  givenname: Jia
  surname: Liu
  fullname: Liu, Jia
  organization: Department of Pathology, New York University Grossman School of Medicine, The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health
– sequence: 8
  givenname: Hui
  surname: Chen
  fullname: Chen, Hui
  organization: Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences
– sequence: 9
  givenname: Qiao
  surname: Lu
  fullname: Lu, Qiao
  organization: Department of Pathology, New York University Grossman School of Medicine, The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health
– sequence: 10
  givenname: Tenny
  surname: Mudianto
  fullname: Mudianto, Tenny
  organization: Department of Pathology, New York University Grossman School of Medicine
– sequence: 11
  givenname: Xinrui
  surname: Zhang
  fullname: Zhang, Xinrui
  organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine
– sequence: 12
  givenname: Chuxuan
  surname: Xiao
  fullname: Xiao, Chuxuan
  organization: Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University
– sequence: 13
  givenname: Yang
  surname: Ye
  fullname: Ye, Yang
  organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 14
  givenname: Qiming
  orcidid: 0000-0003-4988-9886
  surname: Sun
  fullname: Sun, Qiming
  organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine
– sequence: 15
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University
– sequence: 16
  givenname: Qi
  surname: Xie
  fullname: Xie, Qi
  organization: Westlake Institute for Advanced Study, School of Life Sciences, Westlake University
– sequence: 17
  givenname: Pei-Hui
  surname: Wang
  fullname: Wang, Pei-Hui
  organization: Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University
– sequence: 18
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  email: jun.wang@nyulangone.org
  organization: Department of Pathology, New York University Grossman School of Medicine, The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health
– sequence: 19
  givenname: Zhenhai
  surname: Li
  fullname: Li, Zhenhai
  email: lizhshu@shu.edu.cn
  organization: Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University
– sequence: 20
  givenname: Jizhong
  orcidid: 0000-0003-4031-6125
  surname: Lou
  fullname: Lou, Jizhong
  email: jlou@ibp.ac.cn
  organization: Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)
– sequence: 21
  givenname: Wei
  orcidid: 0000-0001-5366-7253
  surname: Chen
  fullname: Chen, Wei
  email: jackweichen@zju.edu.cn
  organization: Department of Cardiology of the Second Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34465913$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1OGzEUha2KqkDKC3SBRuqmG7f-H8-mUhRRqARCgsLW8njsYDqxU3sShbfHIQFKFqxs6X7n6Nx7DsFeiMEC8AWj7xhR-SMzzAiBiGCIEOcSrj6AA1wzCWtJ5V75I1RGApF9cJjzPUKEM44_gX3KmOANpgdgfGHNnQ7e6L7SZvBLPfgYquiqPPd_beViHmzK1fX46hpO4i0k1dKnAvvgrFmzn8FHp_tsj7bvCNz8OvkzOYPnl6e_J-NzaFjNBigIc1y0RvKS1LVdK3BjcCsdEa2l0jrTNbjRteNYd8y1jpqOYiaaru2MxpKOwM-N73zRzmxnbBhKDjVPfqbTg4raq7eT4O_UNC6VZEgIvjb4tjVI8d_C5kHNfDa273WwcZEV4UKWA-G6KejXHfQ-LlIo6xWqlkSwWtSFOv4_0UuU5-sWQG4Ak2LOyTpl_PB04BLQ9wojtS5SbYpUpUj1VKRaFSnZkT67vyuiG1EucJja9Br7HdUjytGw_A
CitedBy_id crossref_primary_10_1016_j_xcrp_2022_101048
crossref_primary_10_1021_jacs_4c04934
crossref_primary_10_1016_j_bbi_2021_12_007
crossref_primary_10_1007_s11831_025_10272_1
crossref_primary_10_1016_j_phymed_2022_154523
crossref_primary_10_1126_sciadv_abo5767
crossref_primary_10_1021_acs_jpclett_4c02598
crossref_primary_10_3390_biom12070964
crossref_primary_10_1088_1674_1056_ac98a2
crossref_primary_10_1093_jee_toac145
crossref_primary_10_1002_EXP_20230004
crossref_primary_10_1080_07391102_2022_2095305
crossref_primary_10_1016_j_bbi_2023_04_009
crossref_primary_10_3390_ijms26051903
crossref_primary_10_1002_smll_202310330
crossref_primary_10_3390_ijms231911542
crossref_primary_10_1039_D2CP01893D
crossref_primary_10_1109_RBME_2024_3505073
crossref_primary_10_1371_journal_ppat_1012493
crossref_primary_10_1039_D3CP02042H
crossref_primary_10_1021_acsinfecdis_2c00259
crossref_primary_10_1016_j_mbm_2023_100002
crossref_primary_10_1021_jacsau_3c00142
crossref_primary_10_1021_acs_jpcb_4c05060
crossref_primary_10_1016_j_reprotox_2022_04_011
crossref_primary_10_3390_v14102094
crossref_primary_10_1093_nar_gkac361
crossref_primary_10_3389_fbioe_2021_764516
crossref_primary_10_1021_acschembio_3c00050
crossref_primary_10_1016_j_vaccine_2023_06_086
Cites_doi 10.1101/2020.08.25.267500
10.1038/nature24469
10.1038/s41422-020-00460-y
10.1371/journal.pone.0001082
10.1016/S0140-6736(20)30183-5
10.1126/science.abc5881
10.1146/annurev-virology-110615-042301
10.1146/annurev-biochem-060208-104626
10.1038/s41392-020-00460-9
10.1016/S1470-2045(11)70320-5
10.1038/s41586-020-2012-7
10.1038/s41586-020-2772-0
10.1016/0263-7855(96)00018-5
10.1073/pnas.1501430112
10.1126/science.1116480
10.1016/j.cell.2020.09.032
10.1093/bioinformatics/btg362
10.1529/biophysj.106.097048
10.1038/s41467-021-21118-2
10.1016/S0006-3495(83)84319-7
10.1039/C6NR07179A
10.1016/j.cell.2020.02.052
10.1038/s41586-020-2179-y
10.1063/1.470648
10.1038/nature02145
10.1021/acsnano.0c02618
10.1126/science.abf2303
10.1016/j.cell.2020.06.043
10.7554/eLife.65365
10.1146/annurev.physiol.68.072304.113102
10.3791/52975
10.1016/j.cell.2014.02.053
10.1002/jcc.20084
10.1038/s41586-020-2180-5
10.1038/s41586-021-03361-1
10.1056/NEJMoa2001316
10.1038/s41590-018-0259-z
10.1016/j.virusres.2012.06.008
10.1074/jbc.M111.325803
10.1126/science.1161748
10.1126/science.abd3255
10.1016/j.devcel.2012.04.005
10.1016/j.cell.2020.09.018
10.1016/j.bbagen.2016.06.010
10.1126/science.abc6952
10.1016/j.cell.2020.06.025
10.1021/jp973084f
10.1101/2020.09.09.287508
10.1126/science.abd4251
10.1103/PhysRevLett.107.098101
10.1016/j.chom.2020.11.004
10.1126/science.abd3072
10.1016/j.molcel.2018.12.018
10.1021/acs.nanolett.0c01360
10.1038/s41586-020-2665-2
10.1126/science.347575
10.1146/annurev.physiol.68.072304.114110
10.1073/pnas.0503879102
10.1126/science.abd0831
10.1126/science.abb2507
10.1101/2020.06.20.161323
10.1016/j.cell.2020.02.058
10.1371/journal.ppat.1007236
10.1073/pnas.2003138117
10.1016/j.cell.2020.03.045
10.1126/science.abe8499
10.1126/science.abd2985
10.1016/S0140-6736(20)30185-9
10.1038/s41590-019-0491-1
10.7554/eLife.46689
10.1002/jcc.20289
10.1093/cid/ciaa410
10.1038/s41586-020-2895-3
10.1038/cr.2016.152
10.1016/j.tim.2004.08.008
10.1038/nature08944
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/s41422-021-00558-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef

ProQuest Central Student
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1748-7838
EndPage 1060
ExternalDocumentID PMC8406658
34465913
10_1038_s41422_021_00558_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology of China, 2019YFA070700; National Natural Science Foundation of China, 11672317; Strategic Priority Research Program of the Chinese Academy of Sciences, XDB37020102
– fundername: Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, TP2018040
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11772348
  funderid: https://doi.org/10.13039/501100001809
– fundername: Ministry of Science and Technology of China, 2017ZX10203205 National Natural Science Foundation of China, 31971237 Zhejiang University special scientific research fund for COVID-19 prevention and control, 2020XGZX077
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11772348
– fundername: ;
– fundername: ;
  grantid: 11772348
GroupedDBID ---
-01
-0A
-Q-
-SA
-S~
0R~
29B
2WC
36B
39C
3V.
4.4
406
53G
5GY
5VR
5XA
5XB
6J9
70F
7X7
88E
8FE
8FH
8FI
8FJ
92E
92I
92M
9D9
9DA
AACDK
AAHBH
AANZL
AASML
AATNV
AAXDM
AAYZH
AAZLF
ABAKF
ABAWZ
ABJNI
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACIWK
ACKTT
ACMJI
ACPRK
ACRQY
ACZOJ
ADBBV
ADFRT
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AESKC
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFRAH
AFSHS
AFUIB
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AOIJS
AXYYD
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C1A
C6C
CAG
CAJEA
CCEZO
CCPQU
CCVFK
CHBEP
COF
CS3
CW9
DIK
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMOBN
F5P
FA0
FDQFY
FERAY
FIGPU
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HYE
HZ~
IWAJR
JSO
JUIAU
JZLTJ
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
NADUK
NAO
NQJWS
NXXTH
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q--
Q-0
R-A
RNS
RNT
RNTTT
ROL
RPM
RT1
S..
SNX
SNYQT
SOHCF
SOJ
SRMVM
SV3
SWTZT
T8Q
TAOOD
TBHMF
TCJ
TDRGL
TGP
TR2
U1F
U1G
U5A
U5K
UKHRP
WFFXF
XSB
~88
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c474t-624f56bc85558fbdb619c1b8f26be38efcd919a7f51ad4fbf3cd31469dbdca183
IEDL.DBID C6C
ISSN 1001-0602
1748-7838
IngestDate Thu Aug 21 13:58:33 EDT 2025
Tue Aug 05 09:03:24 EDT 2025
Fri Jul 25 08:56:12 EDT 2025
Mon Jul 21 06:03:08 EDT 2025
Thu Apr 24 22:50:22 EDT 2025
Tue Jul 01 03:41:39 EDT 2025
Fri Feb 21 02:38:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-624f56bc85558fbdb619c1b8f26be38efcd919a7f51ad4fbf3cd31469dbdca183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4988-9886
0000-0003-4031-6125
0000-0001-5366-7253
OpenAccessLink https://www.nature.com/articles/s41422-021-00558-x
PMID 34465913
PQID 2578264767
PQPubID 536307
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8406658
proquest_miscellaneous_2568254179
proquest_journals_2578264767
pubmed_primary_34465913
crossref_citationtrail_10_1038_s41422_021_00558_x
crossref_primary_10_1038_s41422_021_00558_x
springer_journals_10_1038_s41422_021_00558_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: England
– name: London
PublicationTitle Cell research
PublicationTitleAbbrev Cell Res
PublicationTitleAlternate Cell Res
PublicationYear 2021
Publisher Springer Singapore
Nature Publishing Group
Publisher_xml – name: Springer Singapore
– name: Nature Publishing Group
References Yi, Gao (CR34) 2017; 9
Zhu, Chen, Lou, Rittase, Li (CR20) 2019; 20
Baum (CR56) 2020; 369
Tschumperlin, Drazen (CR17) 2006; 68
Hou (CR45) 2020; 370
Barnes (CR57) 2020; 182
Zhang (CR46) 2021; 372
Li, Li, Farzan, Harrison (CR68) 2005; 309
Li (CR1) 2020; 382
Lan (CR32) 2020; 581
Bell (CR49) 1978; 200
Fiser, Sali (CR76) 2003; 19
Hoffmann (CR9) 2020; 181
Zhou (CR7) 2020; 579
Zhang (CR42) 2020; 11
Wang (CR6) 2021; 31
CR5
D’Agostino, Risselada, Lurick, Ungermann, Mayer (CR52) 2017; 551
Evans (CR79) 1983; 43
Song, Gui, Wang, Xiang (CR15) 2018; 14
Mateu (CR35) 2012; 168
Lv (CR55) 2020; 369
Meloty-Kapella, Shergill, Kuon, Botvinick, Weinmaster (CR22) 2012; 22
Lou, Zhu (CR59) 2007; 92
CR40
MacKerell (CR72) 1998; 102
Zhou (CR77) 2020; 28
Korber (CR38) 2020; 182
Wrapp (CR28) 2020; 367
Gao, Shi, Freund (CR23) 2005; 102
Wang, Horby, Hayden, Gao (CR2) 2020; 395
Phillips (CR71) 2005; 26
Cai (CR27) 2020; 369
Daniloski (CR47) 2021; 10
Huang (CR60) 2010; 464
Chu (CR37) 2020; 71
Pettersen (CR74) 2004; 25
Ke (CR31) 2020; 588
CR14
CR58
Wu, Peng, Wilken, Geraghty, Li (CR69) 2012; 287
Li (CR12) 2016; 3
Li (CR8) 2003; 426
Feller, Zhang, Pastor, Brooks (CR70) 1995; 103
Fredberg, Kamm (CR18) 2006; 68
Yao (CR30) 2020; 183
Yao, Lee, Waring, Wong, Hong (CR78) 2015; 112
Zhang, Kutateladze (CR54) 2020; 11
Cantuti-Castelvetri (CR3) 2020; 370
Wu (CR21) 2019; 73
Zhou (CR41) 2021; 592
An (CR64) 2020; 20
Hofmann, Pohlmann (CR10) 2004; 12
Yurkovetskiy (CR39) 2020; 183
Yao (CR67) 2016; 7
Luo, Kuang, Zhang, Song (CR36) 2016; 1860
Plante (CR44) 2021; 592
Chi (CR50) 2020; 369
Beniac, deVarennes, Andonov, He, Booth (CR13) 2007; 2
Toelzer (CR29) 2020; 370
Michaud, Boland, Rabi (CR43) 2020
Chen (CR65) 2012; 13
Hu (CR63) 2019; 8
Sudhof, Rothman (CR51) 2009; 323
Gui (CR75) 2017; 27
Shang (CR24) 2020; 581
Hong (CR66) 2018; 19
Wang (CR25) 2020; 181
Humphrey, Dalke, Schulten (CR73) 1996; 14
Daly (CR4) 2020; 370
Huang (CR16) 2020; 395
CR61
Huang (CR19) 2020; 14
Walls (CR26) 2020; 181
Liu, Chen, Evavold, Zhu (CR62) 2014; 157
Shang (CR11) 2020; 117
Yi, Shi, Gao (CR33) 2011; 107
Ozono (CR48) 2021; 12
Mercer, Schelhaas, Helenius (CR53) 2010; 79
H Huang (558_CR19) 2020; 14
J Lan (558_CR32) 2020; 581
WA Michaud (558_CR43) 2020
558_CR61
L Meloty-Kapella (558_CR22) 2012; 22
C Toelzer (558_CR29) 2020; 370
C Huang (558_CR16) 2020; 395
Q Li (558_CR1) 2020; 382
Y Cai (558_CR27) 2020; 369
F Li (558_CR68) 2005; 309
C An (558_CR64) 2020; 20
M Yao (558_CR67) 2016; 7
H Yao (558_CR30) 2020; 183
GI Bell (558_CR49) 1978; 200
W Humphrey (558_CR73) 1996; 14
H Chu (558_CR37) 2020; 71
J Mercer (558_CR53) 2010; 79
F Li (558_CR12) 2016; 3
B Liu (558_CR62) 2014; 157
EA Evans (558_CR79) 1983; 43
TC Sudhof (558_CR51) 2009; 323
Q Wang (558_CR25) 2020; 181
S Ozono (558_CR48) 2021; 12
S Wang (558_CR6) 2021; 31
JA Plante (558_CR44) 2021; 592
A Baum (558_CR56) 2020; 369
K Wu (558_CR69) 2012; 287
YJ Hou (558_CR45) 2020; 370
JC Phillips (558_CR71) 2005; 26
558_CR5
A Fiser (558_CR76) 2003; 19
JL Daly (558_CR4) 2020; 370
L Cantuti-Castelvetri (558_CR3) 2020; 370
558_CR14
558_CR58
L Chen (558_CR65) 2012; 13
J Huang (558_CR60) 2010; 464
DJ Tschumperlin (558_CR17) 2006; 68
J Shang (558_CR11) 2020; 117
H Hofmann (558_CR10) 2004; 12
Z Lv (558_CR55) 2020; 369
EF Pettersen (558_CR74) 2004; 25
J Shang (558_CR24) 2020; 581
W Song (558_CR15) 2018; 14
X Yi (558_CR33) 2011; 107
MG Mateu (558_CR35) 2012; 168
558_CR40
HW Yao (558_CR78) 2015; 112
Y Zhang (558_CR54) 2020; 11
L Yurkovetskiy (558_CR39) 2020; 183
J Hong (558_CR66) 2018; 19
Z Ke (558_CR31) 2020; 588
M Gui (558_CR75) 2017; 27
X Yi (558_CR34) 2017; 9
M D’Agostino (558_CR52) 2017; 551
P Wu (558_CR21) 2019; 73
AC Walls (558_CR26) 2020; 181
D Wrapp (558_CR28) 2020; 367
L Zhang (558_CR42) 2020; 11
J Zhang (558_CR46) 2021; 372
H Gao (558_CR23) 2005; 102
SE Feller (558_CR70) 1995; 103
CO Barnes (558_CR57) 2020; 182
Z Daniloski (558_CR47) 2021; 10
AD MacKerell (558_CR72) 1998; 102
X Chi (558_CR50) 2020; 369
T Zhou (558_CR77) 2020; 28
B Korber (558_CR38) 2020; 182
M Hoffmann (558_CR9) 2020; 181
W Hu (558_CR63) 2019; 8
P Zhou (558_CR7) 2020; 579
J Lou (558_CR59) 2007; 92
C Wang (558_CR2) 2020; 395
JJ Fredberg (558_CR18) 2006; 68
W Li (558_CR8) 2003; 426
DR Beniac (558_CR13) 2007; 2
C Zhu (558_CR20) 2019; 20
Q Luo (558_CR36) 2016; 1860
B Zhou (558_CR41) 2021; 592
34616015 - Nat Cell Biol. 2021 Oct;23(10):1051
34588627 - Cell Res. 2021 Sep 29
References_xml – volume: 19
  start-page: 1379
  year: 2018
  end-page: 1390
  ident: CR66
  article-title: A TCR mechanotransduction signaling loop induces negative selection in the thymus
  publication-title: Nat. Immunol.
– volume: 28
  start-page: 867
  year: 2020
  end-page: 879
  ident: CR77
  article-title: Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains
  publication-title: Cell Host Microbe
– volume: 10
  start-page: e65365
  year: 2021
  ident: CR47
  article-title: The D614G mutation in SARS-CoV-2 Spike increases transduction of multiple human cell types
  publication-title: Elife
– volume: 181
  start-page: 281
  year: 2020
  end-page: 292
  ident: CR26
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
– volume: 592
  start-page: 116
  year: 2021
  end-page: 121
  ident: CR44
  article-title: Spike mutation D614G alters SARS-CoV-2 fitness
  publication-title: Nature
– volume: 1860
  start-page: 1953
  year: 2016
  end-page: 1960
  ident: CR36
  article-title: Cell stiffness determined by atomic force microscopy and its correlation with cell motility
  publication-title: Biochim. Biophys. Acta General Subj.
– volume: 20
  start-page: 5133
  year: 2020
  end-page: 5140
  ident: CR64
  article-title: Ultra-stable biomembrane force probe for accurately determining slow dissociation kinetics of PD-1 blockade antibodies on single living cells
  publication-title: Nano Lett.
– volume: 12
  start-page: 466
  year: 2004
  end-page: 472
  ident: CR10
  article-title: Cellular entry of the SARS coronavirus
  publication-title: Trends Microbiol.
– volume: 370
  start-page: 1464
  year: 2020
  end-page: 1468
  ident: CR45
  article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo
  publication-title: Science
– volume: 464
  start-page: 932
  year: 2010
  end-page: 936
  ident: CR60
  article-title: The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness
  publication-title: Nature
– volume: 168
  start-page: 1
  year: 2012
  end-page: 22
  ident: CR35
  article-title: Mechanical properties of viruses analyzed by atomic force microscopy: a virological perspective
  publication-title: Virus Res.
– volume: 9
  start-page: 454
  year: 2017
  end-page: 463
  ident: CR34
  article-title: Kinetics of receptor-mediated endocytosis of elastic nanoparticles
  publication-title: Nanoscale
– volume: 2
  start-page: e1082
  year: 2007
  ident: CR13
  article-title: Conformational reorganization of the SARS coronavirus spike following receptor binding: implications for membrane fusion
  publication-title: PLoS One
– ident: CR61
– volume: 395
  start-page: 497
  year: 2020
  end-page: 506
  ident: CR16
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
– volume: 20
  start-page: 1269
  year: 2019
  end-page: 1278
  ident: CR20
  article-title: Mechanosensing through immunoreceptors
  publication-title: Nat. Immunol.
– ident: CR58
– volume: 183
  start-page: 730
  year: 2020
  end-page: 738
  ident: CR30
  article-title: Molecular architecture of the SARS-CoV-2 virus
  publication-title: Cell
– volume: 26
  start-page: 1781
  year: 2005
  end-page: 1802
  ident: CR71
  article-title: Scalable molecular dynamics with NAMD
  publication-title: J. Comput. Chem.
– volume: 103
  start-page: 4613
  year: 1995
  end-page: 4621
  ident: CR70
  article-title: Constant pressure molecular dynamics simulation: the Langevin piston method
  publication-title: J. Chem. Phys.
– volume: 73
  start-page: 1015
  year: 2019
  end-page: 1027
  ident: CR21
  article-title: Mechano-regulation of peptide-MHC class I conformations determines TCR antigen recognition
  publication-title: Mol. Cell
– volume: 370
  start-page: 725
  year: 2020
  end-page: 730
  ident: CR29
  article-title: Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein
  publication-title: Science
– volume: 369
  start-page: 650
  year: 2020
  end-page: 655
  ident: CR50
  article-title: A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2
  publication-title: Science
– volume: 14
  start-page: 3747
  year: 2020
  end-page: 3754
  ident: CR19
  article-title: COVID-19: a call for physical scientists and engineers
  publication-title: ACS Nano
– volume: 157
  start-page: 357
  year: 2014
  end-page: 368
  ident: CR62
  article-title: Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling
  publication-title: Cell
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: CR74
  article-title: UCSF Chimera-a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 382
  start-page: 1199
  year: 2020
  end-page: 1207
  ident: CR1
  article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia
  publication-title: N. Engl. J. Med.
– volume: 183
  start-page: 739
  year: 2020
  end-page: 751.e738
  ident: CR39
  article-title: Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant
  publication-title: Cell
– volume: 8
  start-page: e46689
  year: 2019
  ident: CR63
  article-title: FcgammaRIIB-I232T polymorphic change allosterically suppresses ligand binding
  publication-title: Elife
– volume: 112
  start-page: 10926
  year: 2015
  end-page: 10931
  ident: CR78
  article-title: Viral fusion protein transmembrane domain adopts beta-strand structure to facilitate membrane topological changes for virus-cell fusion
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 68
  start-page: 507
  year: 2006
  end-page: 541
  ident: CR18
  article-title: Stress transmission in the lung: pathways from organ to molecule
  publication-title: Annu. Rev. Physiol.
– volume: 369
  start-page: 1586
  year: 2020
  end-page: 1592
  ident: CR27
  article-title: Distinct conformational states of SARS-CoV-2 spike protein
  publication-title: Science
– volume: 107
  start-page: 098101
  year: 2011
  ident: CR33
  article-title: Cellular uptake of elastic nanoparticles
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 2500
  year: 2003
  end-page: 2501
  ident: CR76
  article-title: ModLoop: automated modeling of loops in protein structures
  publication-title: Bioinformatics
– volume: 102
  start-page: 9469
  year: 2005
  end-page: 9474
  ident: CR23
  article-title: Mechanics of receptor-mediated endocytosis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 369
  start-page: 1014
  year: 2020
  end-page: 1018
  ident: CR56
  article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies
  publication-title: Science
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: CR7
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– ident: CR5
– volume: 117
  start-page: 11727
  year: 2020
  end-page: 11734
  ident: CR11
  article-title: Cell entry mechanisms of SARS-CoV-2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 323
  start-page: 474
  year: 2009
  end-page: 477
  ident: CR51
  article-title: Membrane fusion: grappling with SNARE and SM proteins
  publication-title: Science
– volume: 14
  start-page: e1007236
  year: 2018
  ident: CR15
  article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2
  publication-title: PLoS Pathog.
– volume: 551
  start-page: 634
  year: 2017
  end-page: 638
  ident: CR52
  article-title: A tethering complex drives the terminal stage of SNARE-dependent membrane fusion
  publication-title: Nature
– year: 2020
  ident: CR43
  article-title: The SARS-CoV-2 Spike mutation D614G increases entry fitness across a range of ACE2 levels, directly outcompetes the wild type, and is preferentially incorporated into trimers
  publication-title: bioRxiv
  doi: 10.1101/2020.08.25.267500
– volume: 182
  start-page: 828
  year: 2020
  end-page: 842
  ident: CR57
  article-title: Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies
  publication-title: Cell
– volume: 367
  start-page: 1260
  year: 2020
  end-page: 1263
  ident: CR28
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 581
  start-page: 215
  year: 2020
  end-page: 220
  ident: CR32
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
– volume: 22
  start-page: 1299
  year: 2012
  end-page: 1312
  ident: CR22
  article-title: Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin
  publication-title: Dev. Cell
– volume: 426
  start-page: 450
  year: 2003
  end-page: 454
  ident: CR8
  article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
  publication-title: Nature
– volume: 11
  year: 2020
  ident: CR54
  article-title: Molecular structure analyses suggest strategies to therapeutically target SARS-CoV-2
  publication-title: Nat. Commun.
– ident: CR14
– volume: 200
  start-page: 618
  year: 1978
  end-page: 627
  ident: CR49
  article-title: Models for the specific adhesion of cells to cells
  publication-title: Science
– volume: 369
  start-page: 1505
  year: 2020
  end-page: 1509
  ident: CR55
  article-title: Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody
  publication-title: Science
– volume: 92
  start-page: 1471
  year: 2007
  end-page: 1485
  ident: CR59
  article-title: A structure-based sliding-rebinding mechanism for catch bonds
  publication-title: Biophys. J.
– volume: 14
  start-page: 33
  year: 1996
  end-page: 83
  ident: CR73
  article-title: VMD: visual molecular dynamics
  publication-title: J. Mol. Graph.
– volume: 581
  start-page: 221
  year: 2020
  end-page: 224
  ident: CR24
  article-title: Structural basis of receptor recognition by SARS-CoV-2
  publication-title: Nature
– volume: 592
  start-page: 122
  year: 2021
  end-page: 127
  ident: CR41
  article-title: SARS-CoV-2 spike D614G change enhances replication and transmission
  publication-title: Nature
– volume: 181
  start-page: 894
  year: 2020
  end-page: 904.e899
  ident: CR25
  article-title: Structural and functional basis of SARS-CoV-2 entry by using human ACE2
  publication-title: Cell
– volume: 309
  start-page: 1864
  year: 2005
  end-page: 1868
  ident: CR68
  article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor
  publication-title: Science
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280
  ident: CR9
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
– volume: 395
  start-page: 470
  year: 2020
  end-page: 473
  ident: CR2
  article-title: A novel coronavirus outbreak of global health concern
  publication-title: Lancet
– ident: CR40
– volume: 79
  start-page: 803
  year: 2010
  end-page: 833
  ident: CR53
  article-title: Virus entry by endocytosis
  publication-title: Annu. Rev. Biochem.
– volume: 102
  start-page: 3586
  year: 1998
  end-page: 3616
  ident: CR72
  article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins
  publication-title: J. Phys. Chem. B
– volume: 588
  start-page: 498
  year: 2020
  end-page: 502
  ident: CR31
  article-title: Structures and distributions of SARS-CoV-2 spike proteins on intact virions
  publication-title: Nature
– volume: 370
  start-page: 856
  year: 2020
  end-page: 860
  ident: CR3
  article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity
  publication-title: Science
– volume: 13
  start-page: 163
  year: 2012
  end-page: 171
  ident: CR65
  article-title: Concurrent chemoradiotherapy plus adjuvant chemotherapy versus concurrent chemoradiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 3 multicentre randomised controlled trial
  publication-title: Lancet Oncol.
– volume: 287
  start-page: 8904
  year: 2012
  end-page: 8911
  ident: CR69
  article-title: Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus
  publication-title: J. Biol. Chem.
– volume: 43
  start-page: 27
  year: 1983
  end-page: 30
  ident: CR79
  article-title: Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests
  publication-title: Biophys. J.
– volume: 11
  year: 2020
  ident: CR42
  article-title: SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity
  publication-title: Nat. Commun.
– volume: 3
  start-page: 237
  year: 2016
  end-page: 261
  ident: CR12
  article-title: Structure, function, and evolution of coronavirus spike proteins
  publication-title: Annu. Rev. Virol.
– volume: 71
  start-page: 1400
  year: 2020
  end-page: 1409
  ident: CR37
  article-title: Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19
  publication-title: Clin. Infect. Dis.
– volume: 7
  year: 2016
  ident: CR67
  article-title: The mechanical response of talin
  publication-title: Nat. Commun.
– volume: 31
  start-page: 126
  year: 2021
  end-page: 140
  ident: CR6
  article-title: AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells
  publication-title: Cell Res.
– volume: 27
  start-page: 119
  year: 2017
  end-page: 129
  ident: CR75
  article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding
  publication-title: Cell Res.
– volume: 68
  start-page: 563
  year: 2006
  end-page: 583
  ident: CR17
  article-title: Chronic effects of mechanical force on airways
  publication-title: Annu. Rev. Physiol.
– volume: 182
  start-page: 812
  year: 2020
  end-page: 827
  ident: CR38
  article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus
  publication-title: Cell
– volume: 12
  start-page: 848
  year: 2021
  end-page: 848
  ident: CR48
  article-title: SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity
  publication-title: Nat. Commun.
– volume: 370
  start-page: 861
  year: 2020
  end-page: 865
  ident: CR4
  article-title: Neuropilin-1 is a host factor for SARS-CoV-2 infection
  publication-title: Science
– volume: 372
  start-page: 525
  year: 2021
  end-page: 530
  ident: CR46
  article-title: Structural impact on SARS-CoV-2 spike protein by D614G substitution
  publication-title: Science
– volume: 551
  start-page: 634
  year: 2017
  ident: 558_CR52
  publication-title: Nature
  doi: 10.1038/nature24469
– volume: 31
  start-page: 126
  year: 2021
  ident: 558_CR6
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-00460-y
– volume: 2
  start-page: e1082
  year: 2007
  ident: 558_CR13
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001082
– volume: 395
  start-page: 497
  year: 2020
  ident: 558_CR16
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 369
  start-page: 1505
  year: 2020
  ident: 558_CR55
  publication-title: Science
  doi: 10.1126/science.abc5881
– volume: 11
  year: 2020
  ident: 558_CR42
  publication-title: Nat. Commun.
– year: 2020
  ident: 558_CR43
  publication-title: bioRxiv
  doi: 10.1101/2020.08.25.267500
– volume: 3
  start-page: 237
  year: 2016
  ident: 558_CR12
  publication-title: Annu. Rev. Virol.
  doi: 10.1146/annurev-virology-110615-042301
– volume: 79
  start-page: 803
  year: 2010
  ident: 558_CR53
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060208-104626
– ident: 558_CR5
  doi: 10.1038/s41392-020-00460-9
– volume: 13
  start-page: 163
  year: 2012
  ident: 558_CR65
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(11)70320-5
– volume: 579
  start-page: 270
  year: 2020
  ident: 558_CR7
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– ident: 558_CR14
  doi: 10.1038/s41586-020-2772-0
– volume: 14
  start-page: 33
  year: 1996
  ident: 558_CR73
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 112
  start-page: 10926
  year: 2015
  ident: 558_CR78
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1501430112
– volume: 309
  start-page: 1864
  year: 2005
  ident: 558_CR68
  publication-title: Science
  doi: 10.1126/science.1116480
– volume: 183
  start-page: 739
  year: 2020
  ident: 558_CR39
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.032
– volume: 19
  start-page: 2500
  year: 2003
  ident: 558_CR76
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg362
– volume: 92
  start-page: 1471
  year: 2007
  ident: 558_CR59
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.097048
– volume: 12
  start-page: 848
  year: 2021
  ident: 558_CR48
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21118-2
– volume: 43
  start-page: 27
  year: 1983
  ident: 558_CR79
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(83)84319-7
– volume: 9
  start-page: 454
  year: 2017
  ident: 558_CR34
  publication-title: Nanoscale
  doi: 10.1039/C6NR07179A
– volume: 181
  start-page: 271
  year: 2020
  ident: 558_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 581
  start-page: 221
  year: 2020
  ident: 558_CR24
  publication-title: Nature
  doi: 10.1038/s41586-020-2179-y
– volume: 103
  start-page: 4613
  year: 1995
  ident: 558_CR70
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470648
– volume: 426
  start-page: 450
  year: 2003
  ident: 558_CR8
  publication-title: Nature
  doi: 10.1038/nature02145
– volume: 14
  start-page: 3747
  year: 2020
  ident: 558_CR19
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c02618
– volume: 372
  start-page: 525
  year: 2021
  ident: 558_CR46
  publication-title: Science
  doi: 10.1126/science.abf2303
– volume: 182
  start-page: 812
  year: 2020
  ident: 558_CR38
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.043
– volume: 10
  start-page: e65365
  year: 2021
  ident: 558_CR47
  publication-title: Elife
  doi: 10.7554/eLife.65365
– volume: 68
  start-page: 563
  year: 2006
  ident: 558_CR17
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.68.072304.113102
– ident: 558_CR61
  doi: 10.3791/52975
– volume: 157
  start-page: 357
  year: 2014
  ident: 558_CR62
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.053
– volume: 11
  year: 2020
  ident: 558_CR54
  publication-title: Nat. Commun.
– volume: 25
  start-page: 1605
  year: 2004
  ident: 558_CR74
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 581
  start-page: 215
  year: 2020
  ident: 558_CR32
  publication-title: Nature
  doi: 10.1038/s41586-020-2180-5
– volume: 592
  start-page: 122
  year: 2021
  ident: 558_CR41
  publication-title: Nature
  doi: 10.1038/s41586-021-03361-1
– volume: 382
  start-page: 1199
  year: 2020
  ident: 558_CR1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001316
– volume: 19
  start-page: 1379
  year: 2018
  ident: 558_CR66
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0259-z
– volume: 7
  year: 2016
  ident: 558_CR67
  publication-title: Nat. Commun.
– volume: 168
  start-page: 1
  year: 2012
  ident: 558_CR35
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2012.06.008
– volume: 287
  start-page: 8904
  year: 2012
  ident: 558_CR69
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.325803
– volume: 323
  start-page: 474
  year: 2009
  ident: 558_CR51
  publication-title: Science
  doi: 10.1126/science.1161748
– volume: 370
  start-page: 725
  year: 2020
  ident: 558_CR29
  publication-title: Science
  doi: 10.1126/science.abd3255
– volume: 22
  start-page: 1299
  year: 2012
  ident: 558_CR22
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2012.04.005
– volume: 183
  start-page: 730
  year: 2020
  ident: 558_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.018
– volume: 1860
  start-page: 1953
  year: 2016
  ident: 558_CR36
  publication-title: Biochim. Biophys. Acta General Subj.
  doi: 10.1016/j.bbagen.2016.06.010
– volume: 369
  start-page: 650
  year: 2020
  ident: 558_CR50
  publication-title: Science
  doi: 10.1126/science.abc6952
– volume: 182
  start-page: 828
  year: 2020
  ident: 558_CR57
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.025
– volume: 102
  start-page: 3586
  year: 1998
  ident: 558_CR72
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp973084f
– ident: 558_CR58
  doi: 10.1101/2020.09.09.287508
– volume: 369
  start-page: 1586
  year: 2020
  ident: 558_CR27
  publication-title: Science
  doi: 10.1126/science.abd4251
– volume: 107
  start-page: 098101
  year: 2011
  ident: 558_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.098101
– volume: 28
  start-page: 867
  year: 2020
  ident: 558_CR77
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.11.004
– volume: 370
  start-page: 861
  year: 2020
  ident: 558_CR4
  publication-title: Science
  doi: 10.1126/science.abd3072
– volume: 73
  start-page: 1015
  year: 2019
  ident: 558_CR21
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.12.018
– volume: 20
  start-page: 5133
  year: 2020
  ident: 558_CR64
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01360
– volume: 588
  start-page: 498
  year: 2020
  ident: 558_CR31
  publication-title: Nature
  doi: 10.1038/s41586-020-2665-2
– volume: 200
  start-page: 618
  year: 1978
  ident: 558_CR49
  publication-title: Science
  doi: 10.1126/science.347575
– volume: 68
  start-page: 507
  year: 2006
  ident: 558_CR18
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.68.072304.114110
– volume: 102
  start-page: 9469
  year: 2005
  ident: 558_CR23
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0503879102
– volume: 369
  start-page: 1014
  year: 2020
  ident: 558_CR56
  publication-title: Science
  doi: 10.1126/science.abd0831
– volume: 367
  start-page: 1260
  year: 2020
  ident: 558_CR28
  publication-title: Science
  doi: 10.1126/science.abb2507
– ident: 558_CR40
  doi: 10.1101/2020.06.20.161323
– volume: 181
  start-page: 281
  year: 2020
  ident: 558_CR26
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 14
  start-page: e1007236
  year: 2018
  ident: 558_CR15
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007236
– volume: 117
  start-page: 11727
  year: 2020
  ident: 558_CR11
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2003138117
– volume: 181
  start-page: 894
  year: 2020
  ident: 558_CR25
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.045
– volume: 370
  start-page: 1464
  year: 2020
  ident: 558_CR45
  publication-title: Science
  doi: 10.1126/science.abe8499
– volume: 370
  start-page: 856
  year: 2020
  ident: 558_CR3
  publication-title: Science
  doi: 10.1126/science.abd2985
– volume: 395
  start-page: 470
  year: 2020
  ident: 558_CR2
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30185-9
– volume: 20
  start-page: 1269
  year: 2019
  ident: 558_CR20
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0491-1
– volume: 8
  start-page: e46689
  year: 2019
  ident: 558_CR63
  publication-title: Elife
  doi: 10.7554/eLife.46689
– volume: 26
  start-page: 1781
  year: 2005
  ident: 558_CR71
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20289
– volume: 71
  start-page: 1400
  year: 2020
  ident: 558_CR37
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciaa410
– volume: 592
  start-page: 116
  year: 2021
  ident: 558_CR44
  publication-title: Nature
  doi: 10.1038/s41586-020-2895-3
– volume: 27
  start-page: 119
  year: 2017
  ident: 558_CR75
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.152
– volume: 12
  start-page: 466
  year: 2004
  ident: 558_CR10
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2004.08.008
– volume: 464
  start-page: 932
  year: 2010
  ident: 558_CR60
  publication-title: Nature
  doi: 10.1038/nature08944
– reference: 34588627 - Cell Res. 2021 Sep 29;:
– reference: 34616015 - Nat Cell Biol. 2021 Oct;23(10):1051
SSID ssj0025451
Score 2.5133538
Snippet The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1047
SubjectTerms 631/337
631/535
ACE2
Angiotensin-converting enzyme 2
Angiotensin-Converting Enzyme 2 - chemistry
Angiotensin-Converting Enzyme 2 - metabolism
Antibodies
Antibodies, Neutralizing - immunology
Binding
Binding Sites
Biomechanics
Biomedical and Life Sciences
Blocking antibodies
Cell Biology
Cell membranes
Coronaviruses
COVID-19
COVID-19 - diagnosis
COVID-19 - therapy
COVID-19 - virology
COVID-19 Serotherapy
Humans
Hydrogen-Ion Concentration
Immunization, Passive
Life Sciences
Locking
Molecular Dynamics Simulation
Pandemics
Protein Binding
Protein Domains - immunology
Protein Subunits - chemistry
Protein Subunits - immunology
Protein Subunits - metabolism
Receptors
SARS-CoV-2 - isolation & purification
SARS-CoV-2 - metabolism
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - immunology
Spike Glycoprotein, Coronavirus - metabolism
Spike protein
Tensile Strength
Viral diseases
Viral infections
Virus Internalization
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-sUuiLVPsVq7KFvrWLTXazyT6VQyoi6IPWcm8h-0WlkpzmBP3vndkkd1xF3wK7Idmd2dn5-M0MwFct0GjAmx3Pt6q5LELOtfvheW7yIhhkCBXzK07P1PGlPJnm08Hh1g2wylEmRkHtWks-8gNiLby8C1X8nN1w6hpF0dWhhcYr2KDSZQTpKqZLgwu1g2hwRdiQIiTPTp9mXh50kpwfnAAKVIaq5PerF9MTbfMpaPK_yGm8kI7ewuagSbJJT_otWPPNNrzue0s-vIPJqaekXqIBo-SF3vXK2sC62dU_zwJld9x27GJyfsEP2z88Y4T3vWYjPKt5D5dHv34fHvOhXwK3spBzrjIZcmVsSTW8gnEGjSObmjJkynhR-mCdTnWN9EhrJ4MJwjqBklI742yNZ_sDrDdt4z8BU1ZKr2vjau2kxsdMKqmtkFLYGmmYQDpuVmWHYuLU0-K6ikFtUVb9Ble4wVXc4Oo-gW-Ld2Z9KY0XZ--ONKiGY9VVSyZI4MtiGA8ERTnqxrd3NEeR1YuCJoGPPckWnxNUHk6nIoFihZiLCVRse3Wkufobi26jIaxQW0vg-0j25W89v4qdl1fxGd5kxIIRHLgL6_PbO7-HSs7c7EdOfgR6e_eB
  priority: 102
  providerName: ProQuest
Title Mechanical activation of spike fosters SARS-CoV-2 viral infection
URI https://link.springer.com/article/10.1038/s41422-021-00558-x
https://www.ncbi.nlm.nih.gov/pubmed/34465913
https://www.proquest.com/docview/2578264767
https://www.proquest.com/docview/2568254179
https://pubmed.ncbi.nlm.nih.gov/PMC8406658
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB70RPCltNVqrvbYgm_t0ia72WQfr4ciBaVoLfcWsr_wUHLinVD_e2c2l5SrbaFvgWySzczO7MzuN98CHGmBSQPO7GjfquayCDnX7rPnucmLYHBAqFhfcXauTq_k12k-3YCsq4WJoP1IaRnddIcO-7SQtFjBCVBAtFElx7hxi6jbaVRP1KRPsjAiiElWhAopQu8M29Ly8g_vWJ-MnkWYz4GSv-2Wxkno5CW8WEWPbNz29xVs-OY1bLfnST7uwvjMUyEvyZ1RwUK73MrmgS3uZjeeBarouF-wy_HFJZ_Mf_CMEcb3lnWQrGYPrk6Ov09O-eqMBG5lIZdcZTLkytiSeLuCcQYTIpuaMmTKeFH6YJ1OdY06SGsngwnCOoHeUTvjbI32_AYGzbzxB8CUldLr2rhaO6nxMpNKaiukFLZGvSWQdsKq7IpAnM6xuK3iRrYoq1bAFQq4igKufibwoX_mrqXP-Gfrw04H1cqUFhX5FIzaCoUdeN_fRiOgnY268fMHaqMo00XnksB-q7L-c4Io4XQqEijWlNk3IILt9TvN7DoSbWPyqzBCS-Bjp_Zf3fr7Xwz_r_lb2MloSEaA4CEMlvcP_h0GOkszgs1iWoxg68vx-beLURznTw9W-B4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtQwcFS2QvCCuEkpYCR4AqskdpzkAaGltNrS7gr1QH1L40tUVMnS3Yr2p_hGZnJVS0Xf-hbJTmLP5RnPBfAmE2g04MmO_K0KLhMf88x-cDzWceI1EoSq8yvGEzU6kF8P48Ml-NPlwlBYZScTa0FtK0N35GtEWnh4Jyr5NP3FqWsUeVe7FhoNWWy7i99oss0-bn1B_L6Nos2N_fURb7sKcCMTOecqkj5W2qRU6cprq9GEMKFOfaS0E6nzxmZhVuCqw8JKr70wVqA8yay2pkAOwO_egmUp0JQZwPLnjcm33d7EQ32kNvHqQCVFsUMrTWJ7ujaTdN3CKSSCCl-l_HzxKLyi314N0_zHV1sfgZv34V6ru7JhQ2wPYMmVD-F2083y4hEMx47SiAnrjNIlmsteVnk2mx7_dMxTPsnpjO0Nd_f4evWdR4wijE9YFxBWPoaDG4HlExiUVemeAVNGSpcV2haZlRk-RlLJzAgphSmQagIIO2Dlpi1fTl00TvLajS7SvAFwjgDOawDn5wG869-ZNsU7rp292uEgbxl5ll-SXQCv-2FkQfKrFKWrzmiOIjsbRVsATxuU9b8TVJAuC0UAyQIy-wlU3ntxpDz-UZf5RtNboX4YwPsO7ZfL-v8uVq7fxSu4M9of7-Q7W5Pt53A3InKsQxNXYTA_PXMvUMWa65ctXTM4umlW-guT-Tf7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJuUAkGCE1hLYseJDwitWlYtpRWiFO0txC9RtUq23a1o_xq_jhkn2dVS0VtvkeI8PA97xvPNDMBrxdFpwJ0d9VtWTOQ-Y8q-dyzTWe41CoQM-RW7e3LrQHweZ-MV-NPnwhCssl8Tw0JtG0Nn5AMSLdy8c5kPfAeL-Lo5-jg5YdRBiiKtfTuNVkR23MVvdN-mH7Y3kddv0nT06fvGFus6DDAjcjFjMhU-k9oUVPXKa6vRnTCJLnwqteOF88aqRFU4g6SywmvPjeW4tiirralQG_C9N-BmzrOEdCwfL5w9tEyCsxcgS5JQRGttinsxmAo6eGEEjqASWAU7X94UL1m6lwGb_0Rtw2Y4ugd3Oys2HrZidx9WXP0AbrV9LS8ewnDXUUIx8T-mxIn22DdufDydHB652FNmyek03h9-22cbzQ-WxoQ1Po57aFj9CA6uhZKPYbVuavcUYmmEcKrStlJWKLxMhRTKcCG4qVB-Ikh6YpWmK2RO_TSOyxBQ50XZErhEApeBwOV5BG_nz0zaMh5Xjl7veVB2Kj0tFwIYwav5bVRGirBUtWvOaIwkjxsXuQietCybf45TaTqV8AjyJWbOB1Ch7-U79eGvUPAbnXCJlmIE73q2L37r_7NYu3oWL-E2KlD5ZXtv5xncSUkaA0ZxHVZnp2fuOdpaM_0iCHUMP69bi_4Csyo6yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+activation+of+spike+fosters+SARS-CoV-2+viral+infection&rft.jtitle=Cell+research&rft.au=Hu%2C+Wei&rft.au=Zhang%2C+Yong&rft.au=Fei%2C+Panyu&rft.au=Zhang%2C+Tongtong&rft.date=2021-10-01&rft.eissn=1748-7838&rft.volume=31&rft.issue=10&rft.spage=1047&rft_id=info:doi/10.1038%2Fs41422-021-00558-x&rft_id=info%3Apmid%2F34465913&rft.externalDocID=34465913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0602&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0602&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0602&client=summon