Mechanical activation of spike fosters SARS-CoV-2 viral infection

The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane...

Full description

Saved in:
Bibliographic Details
Published inCell research Vol. 31; no. 10; pp. 1047 - 1060
Main Authors Hu, Wei, Zhang, Yong, Fei, Panyu, Zhang, Tongtong, Yao, Danmei, Gao, Yufei, Liu, Jia, Chen, Hui, Lu, Qiao, Mudianto, Tenny, Zhang, Xinrui, Xiao, Chuxuan, Ye, Yang, Sun, Qiming, Zhang, Jing, Xie, Qi, Wang, Pei-Hui, Wang, Jun, Li, Zhenhai, Lou, Jizhong, Chen, Wei
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.10.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike’s S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike’s receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~10 3 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 10 6 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1001-0602
1748-7838
1748-7838
DOI:10.1038/s41422-021-00558-x