Trichoderma-secreted anthranilic acid promotes lateral root development via auxin signaling and RBOHF-induced endodermal cell wall remodeling
Trichoderma spp. have evolved the capacity to communicate with plants by producing various secondary metabolites (SMs). Nonhormonal SMs play important roles in plant root development, while specific SMs from rhizosphere microbes and their underlying mechanisms to control plant root branching are sti...
Saved in:
Published in | Cell reports (Cambridge) Vol. 43; no. 4; p. 114030 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
23.04.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Trichoderma spp. have evolved the capacity to communicate with plants by producing various secondary metabolites (SMs). Nonhormonal SMs play important roles in plant root development, while specific SMs from rhizosphere microbes and their underlying mechanisms to control plant root branching are still largely unknown. In this study, a compound, anthranilic acid (2-AA), is identified from T. guizhouense NJAU4742 to promote lateral root development. Further studies demonstrate that 2-AA positively regulates auxin signaling and transport in the canonical auxin pathway. 2-AA also partly rescues the lateral root numbers of CASP1pro:shy2-2, which regulates endodermal cell wall remodeling via an RBOHF-induced reactive oxygen species burst. In addition, our work reports another role for microbial 2-AA in the regulation of lateral root development, which is different from its better-known role in plant indole-3-acetic acid biosynthesis. In summary, this study identifies 2-AA from T. guizhouense NJAU4742, which plays versatile roles in regulating plant root development.
[Display omitted]
•2-AA identified from T. guizhouense NJAU4742 can promote lateral root development•2-AA regulates auxin signaling and transport in the canonical auxin pathway•2-AA enhances endodermal cell wall remodeling via an RBOHF-induced ROS burst
Chen et al. show that 2-AA, a compound identified from T. guizhouense NJAU4742, promotes plant lateral root development via the canonical auxin pathway as a stimulator and increases ROS deposition in the Casparian strip as an IAA mimic, which finally enhances endodermal cell wall remodeling and facilitates lateral root emergence. |
---|---|
AbstractList | Trichoderma spp. have evolved the capacity to communicate with plants by producing various secondary metabolites (SMs). Nonhormonal SMs play important roles in plant root development, while specific SMs from rhizosphere microbes and their underlying mechanisms to control plant root branching are still largely unknown. In this study, a compound, anthranilic acid (2-AA), is identified from T. guizhouense NJAU4742 to promote lateral root development. Further studies demonstrate that 2-AA positively regulates auxin signaling and transport in the canonical auxin pathway. 2-AA also partly rescues the lateral root numbers of CASP1pro:shy2-2, which regulates endodermal cell wall remodeling via an RBOHF-induced reactive oxygen species burst. In addition, our work reports another role for microbial 2-AA in the regulation of lateral root development, which is different from its better-known role in plant indole-3-acetic acid biosynthesis. In summary, this study identifies 2-AA from T. guizhouense NJAU4742, which plays versatile roles in regulating plant root development. Trichoderma spp. have evolved the capacity to communicate with plants by producing various secondary metabolites (SMs). Nonhormonal SMs play important roles in plant root development, while specific SMs from rhizosphere microbes and their underlying mechanisms to control plant root branching are still largely unknown. In this study, a compound, anthranilic acid (2-AA), is identified from T. guizhouense NJAU4742 to promote lateral root development. Further studies demonstrate that 2-AA positively regulates auxin signaling and transport in the canonical auxin pathway. 2-AA also partly rescues the lateral root numbers of CASP1pro:shy2-2, which regulates endodermal cell wall remodeling via an RBOHF-induced reactive oxygen species burst. In addition, our work reports another role for microbial 2-AA in the regulation of lateral root development, which is different from its better-known role in plant indole-3-acetic acid biosynthesis. In summary, this study identifies 2-AA from T. guizhouense NJAU4742, which plays versatile roles in regulating plant root development. [Display omitted] •2-AA identified from T. guizhouense NJAU4742 can promote lateral root development•2-AA regulates auxin signaling and transport in the canonical auxin pathway•2-AA enhances endodermal cell wall remodeling via an RBOHF-induced ROS burst Chen et al. show that 2-AA, a compound identified from T. guizhouense NJAU4742, promotes plant lateral root development via the canonical auxin pathway as a stimulator and increases ROS deposition in the Casparian strip as an IAA mimic, which finally enhances endodermal cell wall remodeling and facilitates lateral root emergence. Trichoderma spp. have evolved the capacity to communicate with plants by producing various secondary metabolites (SMs). Nonhormonal SMs play important roles in plant root development, while specific SMs from rhizosphere microbes and their underlying mechanisms to control plant root branching are still largely unknown. In this study, a compound, anthranilic acid (2-AA), is identified from T. guizhouense NJAU4742 to promote lateral root development. Further studies demonstrate that 2-AA positively regulates auxin signaling and transport in the canonical auxin pathway. 2-AA also partly rescues the lateral root numbers of CASP1 :shy2-2, which regulates endodermal cell wall remodeling via an RBOHF-induced reactive oxygen species burst. In addition, our work reports another role for microbial 2-AA in the regulation of lateral root development, which is different from its better-known role in plant indole-3-acetic acid biosynthesis. In summary, this study identifies 2-AA from T. guizhouense NJAU4742, which plays versatile roles in regulating plant root development. Trichoderma spp. have evolved the capacity to communicate with plants by producing various secondary metabolites (SMs). Nonhormonal SMs play important roles in plant root development, while specific SMs from rhizosphere microbes and their underlying mechanisms to control plant root branching are still largely unknown. In this study, a compound, anthranilic acid (2-AA), is identified from T. guizhouense NJAU4742 to promote lateral root development. Further studies demonstrate that 2-AA positively regulates auxin signaling and transport in the canonical auxin pathway. 2-AA also partly rescues the lateral root numbers of CASP1pro:shy2-2, which regulates endodermal cell wall remodeling via an RBOHF-induced reactive oxygen species burst. In addition, our work reports another role for microbial 2-AA in the regulation of lateral root development, which is different from its better-known role in plant indole-3-acetic acid biosynthesis. In summary, this study identifies 2-AA from T. guizhouense NJAU4742, which plays versatile roles in regulating plant root development.Trichoderma spp. have evolved the capacity to communicate with plants by producing various secondary metabolites (SMs). Nonhormonal SMs play important roles in plant root development, while specific SMs from rhizosphere microbes and their underlying mechanisms to control plant root branching are still largely unknown. In this study, a compound, anthranilic acid (2-AA), is identified from T. guizhouense NJAU4742 to promote lateral root development. Further studies demonstrate that 2-AA positively regulates auxin signaling and transport in the canonical auxin pathway. 2-AA also partly rescues the lateral root numbers of CASP1pro:shy2-2, which regulates endodermal cell wall remodeling via an RBOHF-induced reactive oxygen species burst. In addition, our work reports another role for microbial 2-AA in the regulation of lateral root development, which is different from its better-known role in plant indole-3-acetic acid biosynthesis. In summary, this study identifies 2-AA from T. guizhouense NJAU4742, which plays versatile roles in regulating plant root development. |
ArticleNumber | 114030 |
Author | Xuan, Wei Miao, Youzhi Liu, Yunpeng Yan, Qiuyan Shen, Qirong Xia, Yanwei Shao, Jiahui Chen, Yu Xun, Weibing Zhang, Ruifu Fu, Yansong |
Author_xml | – sequence: 1 givenname: Yu surname: Chen fullname: Chen, Yu organization: Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China – sequence: 2 givenname: Yansong surname: Fu fullname: Fu, Yansong organization: Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China – sequence: 3 givenname: Yanwei surname: Xia fullname: Xia, Yanwei organization: Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China – sequence: 4 givenname: Youzhi surname: Miao fullname: Miao, Youzhi organization: Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China – sequence: 5 givenname: Jiahui surname: Shao fullname: Shao, Jiahui organization: Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China – sequence: 6 givenname: Wei surname: Xuan fullname: Xuan, Wei organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China – sequence: 7 givenname: Yunpeng surname: Liu fullname: Liu, Yunpeng organization: State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 8 givenname: Weibing surname: Xun fullname: Xun, Weibing organization: Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China – sequence: 9 givenname: Qiuyan surname: Yan fullname: Yan, Qiuyan organization: Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China – sequence: 10 givenname: Qirong surname: Shen fullname: Shen, Qirong organization: Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China – sequence: 11 givenname: Ruifu orcidid: 0000-0002-3334-4286 surname: Zhang fullname: Zhang, Ruifu email: rfzhang@njau.edu.cn organization: Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38551966$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhiNUREvpGyDkI5cstuMkGw5ItKK0UqVKqJyt2fFk65VjL7Z3gYfgnfGSFiEO4INtjf7_G838z6sjHzxV1UvBF4KL7s1mgeQibReSS7UQQvGGP6lOpBSiFlL1R3_8j6uzlDa8nI4LMahn1XGzbFsxdN1J9eMuWrwPhuIEdSKMlMkw8Pk-grfOIgO0hm1jmEKmxBxkiuBYDCEzQ3tyYTuRz2xvgcHum_Us2bUHZ_26YAz7dH57dVlbb3ZYwOTN3MuxMoBjX6FckaZSPDheVE9HcInOHt7T6vPlh7uLq_rm9uP1xfubGlWvct2OuFLIjWyWshm7AY0YR2ypwb4Vatm3ErDtlmNrSPSgRuqAS-rHvmtxWBrVnFbXM9cE2OhttBPE7zqA1b8KIa41xGzRkSboCQdUBnupVp0CA10DynDZrXqUB9brmVV29GVHKevJpsNw4Cnskm64lG3fDEoU6asH6W41kfnd-DGOIng7CzCGlCKNGm2GbIPPEazTgutD_Hqj5_j1IX49x1_M6i_zI_8_tnezjcrC95aiTmjJl7RsJMxlI_bfgJ8ZR82h |
CitedBy_id | crossref_primary_10_48130_forres_0024_0025 crossref_primary_10_1016_j_cej_2024_156237 crossref_primary_10_1007_s00299_024_03281_0 crossref_primary_10_1016_j_bioflm_2024_100239 crossref_primary_10_3390_jof11010009 crossref_primary_10_1016_j_jip_2025_108299 crossref_primary_10_1111_jipb_13844 crossref_primary_10_12677_amb_2024_133019 crossref_primary_10_1111_jipb_13733 crossref_primary_10_1111_nph_20370 crossref_primary_10_3390_microorganisms13010187 |
Cites_doi | 10.1016/j.pbi.2023.102336 10.1111/tpj.12399 10.1007/s11103-008-9417-2 10.1093/mp/ssq048 10.1016/j.tplants.2020.07.006 10.1016/j.pbi.2017.09.005 10.1146/annurev-arplant-043015-111848 10.1016/j.celrep.2020.108060 10.1126/science.1245871 10.1038/s41477-020-00826-5 10.1111/pce.14021 10.1038/s41579-022-00819-5 10.1038/nature05731 10.1093/jxb/ert080 10.1093/jxb/erv179 10.1105/tpc.111.089029 10.1016/j.tplants.2013.04.006 10.1186/s12934-019-1196-8 10.1105/tpc.010354 10.1016/j.fgb.2008.10.008 10.1007/s11104-020-04435-1 10.1016/j.tplants.2009.05.002 10.1093/jxb/erad263 10.1016/j.tig.2017.05.002 10.1371/journal.pbio.0060307 10.1242/dev.02027 10.1104/pp.108.130369 10.1093/pcp/pcy107 10.1073/pnas.2301054120 10.1073/pnas.0712307105 10.1016/j.ceb.2017.03.001 10.1073/pnas.1308412110 10.1126/science.273.5277.948 10.1016/j.molp.2020.11.011 10.1016/j.molp.2019.03.015 10.1111/nph.13725 10.1126/science.abd0695 10.1016/j.pbi.2015.10.012 10.1242/dev.124.1.33 10.1360/SSV-2021-0179 10.1111/1462-2920.16286 10.1038/ncb1754 10.1016/j.tplants.2019.06.015 10.1126/science.adi5032 10.1126/science.1123542 10.1104/pp.18.00126 10.1016/S0092-8674(03)00924-3 10.1002/ptr.6728 10.1038/s41396-020-0682-7 10.1094/MPMI-08-20-0240-R 10.1073/pnas.2020857118 10.1101/cshperspect.a001537 10.1111/jipb.13225 10.1038/nature03184 10.1073/pnas.1006740108 10.1016/j.tplants.2016.01.005 10.1016/j.cell.2013.02.045 10.1111/pce.14230 10.1111/nph.15877 10.1016/j.fcr.2016.06.023 10.1093/jxb/erac074 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.celrep.2024.114030 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
ExternalDocumentID | oai_doaj_org_article_ea7ec9c4dc724b64ada63a4d026b7c24 38551966 10_1016_j_celrep_2024_114030 S2211124724003589 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 4.4 457 53G 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAMRU AAXUO AAYWO ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AENEX AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 O-L O9- OK1 ROL SSZ AAYXX CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c474t-5fcb4c0d23823f69cd1ffc5e3c75148752ac568f5de17a4fe6a02e7f765c98d43 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:28:58 EDT 2025 Fri Jul 11 09:48:12 EDT 2025 Mon Jul 21 05:51:19 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 Wed Jul 16 16:48:58 EDT 2025 Sat Aug 09 17:30:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | cell wall remodeling CP: Plants ROS burst auxin biosynthesis anthranilic acid auxin signaling endodermis Trichoderma spp auxin transport lateral root development secondary metabolite |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-5fcb4c0d23823f69cd1ffc5e3c75148752ac568f5de17a4fe6a02e7f765c98d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3334-4286 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124724003589 |
PMID | 38551966 |
PQID | 3022573941 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ea7ec9c4dc724b64ada63a4d026b7c24 proquest_miscellaneous_3022573941 pubmed_primary_38551966 crossref_citationtrail_10_1016_j_celrep_2024_114030 crossref_primary_10_1016_j_celrep_2024_114030 elsevier_sciencedirect_doi_10_1016_j_celrep_2024_114030 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-23 |
PublicationDateYYYYMMDD | 2024-04-23 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2024 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Orman-Ligeza, Parizot, de Rycke, Fernandez, Himschoot, van Breusegem, Bennett, Périlleux, Beeckman, Draye (bib25) 2016; 143 Lv, Wei, Hu, Tian, Zhang, Yu, Zhang, Su, Sang, Zhang, Ding (bib53) 2021; 14 Stoeckle, Thellmann, Vermeer (bib16) 2018; 41 Xu, Zhang, Shao, Feng, Zhang, Shen (bib37) 2020; 449 Contreras-Cornejo, Macías-Rodríguez, Cortés-Penagos, López-Bucio (bib34) 2009; 149 Vermeer, von Wangenheim, Barberon, Lee, Stelzer, Maizel, Geldner (bib12) 2014; 343 Swarup, Benková, Swarup, Casimiro, Péret, Yang, Parry, Nielsen, De Smet, Vanneste (bib24) 2008; 10 Li, Chen, Fu, Shao, Liu, Xuan, Xu, Zhang (bib28) 2024; 75 Korasick, Enders, Strader (bib56) 2013; 64 Gao, Huang, Reyt, Song, Love, Tiemessen, Xue, Wu, George, Chen (bib65) 2023; 382 Meng, Miao, Liu, Ma, Guo, Liu, Ran, Shen (bib40) 2019; 18 Bennett, Marchant, Green, May, Ward, Millner, Walker, Schulz, Feldmann, Bennett (bib22) 1996; 273 Venturi, Keel (bib4) 2016; 21 McCleery, Mohd-Radzman, Grieneisen (bib6) 2017; 44 Rubio, Hermosa, Reino, Collado, Monte (bib41) 2009; 46 Matsumoto, Fan, Wang, Kusstatscher, Duan, Wu, Chen, Qiao, Wang, Ma (bib48) 2021; 7 Vinale, Sivasithamparam (bib32) 2020; 34 Doyle, Rigal, Grones, Karady, Barange, Majda, Pařízková, Karampelias, Zwiewka, Pěnčík (bib55) 2019; 223 Billou, Xu, Wildwater, Willemsen, Paponov, Frimi, Heldstra, Aida, Palme, Scheres (bib54) 2005; 433 Nziengui, Lasok, Kochersperger, Ruperti, Rébeillé, Palme, Ditengou (bib43) 2018; 178 Zhu, Li, Li, Liu, Miao, Liu, Shen (bib63) 2023; 25 Song, Yin, Sun, Cui, Huang, Li, Yang, Zhou, Deng (bib47) 2020; 14 Hosmani, Kamiya, Danku, Naseer, Geldner, Guerinot, Salt (bib59) 2013; 110 Lee, Rubio, Alassimone, Geldner (bib27) 2013; 153 Li, Shao, Fu, Chen, Wang, Xu, Feng, Xun, Liu, Zhang (bib39) 2022; 45 Wang, Whalley, Miller, White, Zhang, Shen (bib3) 2020; 25 Woo, Hermosa, Lorito, Monte (bib36) 2023; 21 Suralta, Kano-Nakata, Niones, Inukai, Kameoka, Tran, Menge, Mitsuya, Yamauchi (bib5) 2018; 220 Salas-González, Reyt, Flis, Custódio, Gopaulchan, Bakhoum, Dew, Suresh, Franke, Dangl (bib60) 2021; 371 Zhang, Yu, Zhang, Li, Wang, Li, Li, Ding, Tian (bib29) 2022; 73 Tan, Calderon-Villalobos, Sharon, Zheng, Robinson, Estelle, Zheng (bib50) 2007; 446 Ulmasov, Murfett, Hagen, Guilfoyle (bib15) 1997; 9 Petrásek, Mravec, Bouchard, Blakeslee, Abas, Seifertová, Wisniewska, Tadele, Kubes, Covanová (bib21) 2006; 312 Drapek, Sparks, Benfey (bib13) 2017; 33 Abas, Kolb, Stadlmann, Janacek, Lukic, Schwechheimer, Sazanov, Mach, Friml, Hammes (bib46) 2021; 118 Yu, Zhang, Friml, Ding (bib33) 2022; 64 Van Norman, Xuan, Beeckman, Benfey (bib7) 2013; 140 Ortiz-Castro, Díaz-Pérez, Martínez-Trujillo, del Río, Campos-García, López-Bucio (bib51) 2011; 108 Zhang, Lu, Hu, Cao, Sun, Sun, Siddikee, Shi, Dai (bib52) 2018; 59 Santos Teixeira, ten Tusscher (bib11) 2019; 12 Marchant, Bhalerao, Casimiro, Eklöf, Casero, Bennett, Sandberg (bib23) 2002; 14 Gonin, Salas-González, Gopaulchan, Frene, Roden, Van de Poel, Salt, Castrillo (bib57) 2023; 120 Benková, Michniewicz, Sauer, Teichmann, Seifertová, Jürgens, Friml (bib18) 2003; 115 Malamy, Benfey (bib64) 1997; 124 He, Brumos, Li, Ji, Ke, Gong, Zeng, Li, Zhang, An (bib42) 2011; 23 Dubrovsky, Sauer, Napsucialy-Mendivil, Ivanchenko, Friml, Shishkova, Celenza, Benková (bib8) 2008; 105 Doyle, Vain, Robert (bib19) 2015; 66 Tsukagoshi (bib58) 2016; 29 Kong, Zhang, Zheng, Sun, Zhang, Zhang, Cui, Lv, Liu, Guo (bib61) 2020; 32 Ravelo-Ortega, Raya-González, López-Bucio (bib31) 2023; 73 Li, Shao, Xie, Jia, Fu, Xu, Zhang, Feng, Xun, Liu (bib30) 2021; 44 Nishimura, Hayashi, Suzuki, Gyohda, Takaoka, Sakaguchi, Matsumoto, Kasahara, Sakai, Kato (bib45) 2014; 77 Ding, Bai (bib1) 2021; 51 Overvoorde, Fukaki, Beeckman (bib14) 2010; 2 Banda, Bellande, von Wangenheim, Goh, Guyomarc’h, Laplaze, Bennett (bib26) 2019; 24 Laskowski, Grieneisen, Hofhuis, Hove, Hogeweg, Marée, Scheres (bib9) 2008; 6 Tzin, Galili (bib44) 2010; 3 Mariana, Armando, México, Blvd, Weslaco, Escuela, Ciencias, Ipn, Ciudad (bib49) 2020 Péret, De Rybel, Casimiro, Benková, Swarup, Laplaze, Beeckman, Bennett (bib62) 2009; 14 Rellán-Álvarez, Lobet, Dinneny (bib2) 2016; 67 Lavenus, Goh, Roberts, Guyomarc’h, Lucas, De Smet, Fukaki, Beeckman, Bennett, Laplaze (bib10) 2013; 18 Vieten, Vanneste, Wiśniewska, Benková, Benjamins, Beeckman, Luschnig, Friml (bib20) 2005; 132 Fukaki, Tasaka (bib17) 2009; 69 Garnica-Vergara, Barrera-Ortiz, Muñoz-Parra, Raya-González, Méndez-Bravo, Macías-Rodríguez, Ruiz-Herrera, López-Bucio (bib35) 2016; 209 Liu, Tang, Meng, Zhu, Zhu, Liu, Shen (bib38) 2021; 34 Korasick (10.1016/j.celrep.2024.114030_bib56) 2013; 64 Ding (10.1016/j.celrep.2024.114030_bib1) 2021; 51 Gao (10.1016/j.celrep.2024.114030_bib65) 2023; 382 Doyle (10.1016/j.celrep.2024.114030_bib19) 2015; 66 Mariana (10.1016/j.celrep.2024.114030_bib49) 2020 Contreras-Cornejo (10.1016/j.celrep.2024.114030_bib34) 2009; 149 Kong (10.1016/j.celrep.2024.114030_bib61) 2020; 32 Doyle (10.1016/j.celrep.2024.114030_bib55) 2019; 223 Meng (10.1016/j.celrep.2024.114030_bib40) 2019; 18 Malamy (10.1016/j.celrep.2024.114030_bib64) 1997; 124 Billou (10.1016/j.celrep.2024.114030_bib54) 2005; 433 Lv (10.1016/j.celrep.2024.114030_bib53) 2021; 14 Van Norman (10.1016/j.celrep.2024.114030_bib7) 2013; 140 Garnica-Vergara (10.1016/j.celrep.2024.114030_bib35) 2016; 209 Lee (10.1016/j.celrep.2024.114030_bib27) 2013; 153 Li (10.1016/j.celrep.2024.114030_bib30) 2021; 44 Bennett (10.1016/j.celrep.2024.114030_bib22) 1996; 273 Vinale (10.1016/j.celrep.2024.114030_bib32) 2020; 34 Vieten (10.1016/j.celrep.2024.114030_bib20) 2005; 132 Venturi (10.1016/j.celrep.2024.114030_bib4) 2016; 21 Benková (10.1016/j.celrep.2024.114030_bib18) 2003; 115 Péret (10.1016/j.celrep.2024.114030_bib62) 2009; 14 Abas (10.1016/j.celrep.2024.114030_bib46) 2021; 118 Ortiz-Castro (10.1016/j.celrep.2024.114030_bib51) 2011; 108 Tzin (10.1016/j.celrep.2024.114030_bib44) 2010; 3 Rellán-Álvarez (10.1016/j.celrep.2024.114030_bib2) 2016; 67 Suralta (10.1016/j.celrep.2024.114030_bib5) 2018; 220 Li (10.1016/j.celrep.2024.114030_bib28) 2024; 75 Santos Teixeira (10.1016/j.celrep.2024.114030_bib11) 2019; 12 Nziengui (10.1016/j.celrep.2024.114030_bib43) 2018; 178 Yu (10.1016/j.celrep.2024.114030_bib33) 2022; 64 Tsukagoshi (10.1016/j.celrep.2024.114030_bib58) 2016; 29 Tan (10.1016/j.celrep.2024.114030_bib50) 2007; 446 Woo (10.1016/j.celrep.2024.114030_bib36) 2023; 21 Matsumoto (10.1016/j.celrep.2024.114030_bib48) 2021; 7 He (10.1016/j.celrep.2024.114030_bib42) 2011; 23 Overvoorde (10.1016/j.celrep.2024.114030_bib14) 2010; 2 Zhu (10.1016/j.celrep.2024.114030_bib63) 2023; 25 Drapek (10.1016/j.celrep.2024.114030_bib13) 2017; 33 Ulmasov (10.1016/j.celrep.2024.114030_bib15) 1997; 9 Liu (10.1016/j.celrep.2024.114030_bib38) 2021; 34 Banda (10.1016/j.celrep.2024.114030_bib26) 2019; 24 Orman-Ligeza (10.1016/j.celrep.2024.114030_bib25) 2016; 143 Stoeckle (10.1016/j.celrep.2024.114030_bib16) 2018; 41 Zhang (10.1016/j.celrep.2024.114030_bib29) 2022; 73 Rubio (10.1016/j.celrep.2024.114030_bib41) 2009; 46 McCleery (10.1016/j.celrep.2024.114030_bib6) 2017; 44 Gonin (10.1016/j.celrep.2024.114030_bib57) 2023; 120 Zhang (10.1016/j.celrep.2024.114030_bib52) 2018; 59 Nishimura (10.1016/j.celrep.2024.114030_bib45) 2014; 77 Salas-González (10.1016/j.celrep.2024.114030_bib60) 2021; 371 Marchant (10.1016/j.celrep.2024.114030_bib23) 2002; 14 Laskowski (10.1016/j.celrep.2024.114030_bib9) 2008; 6 Dubrovsky (10.1016/j.celrep.2024.114030_bib8) 2008; 105 Vermeer (10.1016/j.celrep.2024.114030_bib12) 2014; 343 Wang (10.1016/j.celrep.2024.114030_bib3) 2020; 25 Petrásek (10.1016/j.celrep.2024.114030_bib21) 2006; 312 Swarup (10.1016/j.celrep.2024.114030_bib24) 2008; 10 Ravelo-Ortega (10.1016/j.celrep.2024.114030_bib31) 2023; 73 Xu (10.1016/j.celrep.2024.114030_bib37) 2020; 449 Fukaki (10.1016/j.celrep.2024.114030_bib17) 2009; 69 Lavenus (10.1016/j.celrep.2024.114030_bib10) 2013; 18 Song (10.1016/j.celrep.2024.114030_bib47) 2020; 14 Hosmani (10.1016/j.celrep.2024.114030_bib59) 2013; 110 Li (10.1016/j.celrep.2024.114030_bib39) 2022; 45 |
References_xml | – volume: 433 start-page: 39 year: 2005 end-page: 44 ident: bib54 article-title: The PIN auxin efflux facilitator network controls growth and patterning in publication-title: Nature – volume: 143 start-page: 3328 year: 2016 end-page: 3339 ident: bib25 article-title: RBOH-mediated ROS production facilitates lateral root emergence in publication-title: Devenir – volume: 44 start-page: 51 year: 2017 end-page: 58 ident: bib6 article-title: Root branching plasticity: collective decision-making results from local and global signalling publication-title: Curr. Opin. Cell Biol. – start-page: 1 year: 2020 end-page: 16 ident: bib49 article-title: Independent tryptophan pathway in publication-title: bioRxiv – volume: 343 start-page: 178 year: 2014 end-page: 183 ident: bib12 article-title: A spatial accommodation by neighboring cells is required for organ initiation in publication-title: Science – volume: 115 start-page: 591 year: 2003 end-page: 602 ident: bib18 article-title: Local, efflux-dependent auxin gradients as a common module for plant organ formation publication-title: Cell – volume: 140 start-page: 4301 year: 2013 end-page: 4310 ident: bib7 article-title: To branch or not to branch: The role of pre-patterning in lateral root formation publication-title: Devenir – volume: 108 start-page: 7253 year: 2011 end-page: 7258 ident: bib51 article-title: Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 285 year: 2021 end-page: 297 ident: bib53 article-title: MPK14-mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis publication-title: Mol. Plant – volume: 273 start-page: 948 year: 1996 end-page: 950 ident: bib22 article-title: Arabidopsis AUX1 gene : A permease-like regulator of root gravitropism publication-title: Science – volume: 153 start-page: 402 year: 2013 end-page: 412 ident: bib27 article-title: A mechanism for localized lignin deposition in the endodermis publication-title: Cell – volume: 3 start-page: 956 year: 2010 end-page: 972 ident: bib44 article-title: New Insights into the shikimate and aromatic amino acids biosynthesis pathways in plants publication-title: Mol. Plant – volume: 32 year: 2020 ident: bib61 article-title: Antagonistic interaction between auxin and SA signaling pathways regulates bacterial infection through lateral root in publication-title: Cell Rep. – volume: 59 start-page: 1889 year: 2018 end-page: 1904 ident: bib52 article-title: Evidence for the involvement of auxin, ethylene and ROS signaling during primary root inhibition of publication-title: Plant Cell Physiol. – volume: 120 start-page: 1 year: 2023 end-page: 10 ident: bib57 article-title: Plant microbiota controls an alternative root branching regulatory mechanism in plants publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 450 year: 2013 end-page: 458 ident: bib10 article-title: Lateral root development in publication-title: Trends Plant Sci. – volume: 209 start-page: 1496 year: 2016 end-page: 1512 ident: bib35 article-title: The volatile 6-pentyl- publication-title: New Phytol. – volume: 29 start-page: 57 year: 2016 end-page: 63 ident: bib58 article-title: Control of root growth and development by reactive oxygen species publication-title: Curr. Opin. Plant Biol. – volume: 69 start-page: 437 year: 2009 end-page: 449 ident: bib17 article-title: Hormone interactions during lateral root formation publication-title: Plant Mol. Biol. – volume: 118 year: 2021 ident: bib46 article-title: Naphthylphthalamic acid associates with and inhibits PIN auxin transporters publication-title: Proc. Natl. Acad. Sci. USA – volume: 67 start-page: 619 year: 2016 end-page: 642 ident: bib2 article-title: Environmental control of root system biology publication-title: Annu. Rev. Plant Biol. – volume: 105 start-page: 8790 year: 2008 end-page: 8794 ident: bib8 article-title: Auxin acts as a local morphogenetic trigger to specify lateral root founder cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 946 year: 2008 end-page: 954 ident: bib24 article-title: The auxin influx carrier LAX3 promotes lateral root emergence publication-title: Nat. Cell Biol. – volume: 449 start-page: 133 year: 2020 end-page: 149 ident: bib37 article-title: Extracellular proteins of publication-title: Plant Soil – volume: 51 start-page: 1447 year: 2021 end-page: 1456 ident: bib1 article-title: The current and future studies on plant root development and root microbiota publication-title: Sci. Sin. -Vitae. – volume: 9 start-page: 1963 year: 1997 end-page: 1971 ident: bib15 article-title: Aux/lAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements publication-title: Plant Cell – volume: 33 start-page: 529 year: 2017 end-page: 539 ident: bib13 article-title: Uncovering gene regulatory networks controlling plant cell differentiation publication-title: Trends Genet. – volume: 73 year: 2023 ident: bib31 article-title: Compounds from rhizosphere microbes that promote plant growth publication-title: Curr. Opin. Plant Biol. – volume: 14 start-page: 589 year: 2002 end-page: 597 ident: bib23 article-title: AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the publication-title: Plant Cell – volume: 73 start-page: 3711 year: 2022 end-page: 3725 ident: bib29 article-title: PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in publication-title: J. Exp. Bot. – volume: 220 start-page: 57 year: 2018 end-page: 66 ident: bib5 article-title: Root plasticity for maintenance of productivity under abiotic stressed soil environments in rice: Progress and prospects publication-title: Field Crops Res. – volume: 75 start-page: 526 year: 2024 end-page: 537 ident: bib28 article-title: Signal communication during microbial modulation of root- system architecture publication-title: J. Exp. Bot. – volume: 77 start-page: 352 year: 2014 end-page: 366 ident: bib45 article-title: Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis publication-title: Plant J. – volume: 64 start-page: 2541 year: 2013 end-page: 2555 ident: bib56 article-title: Auxin biosynthesis and storage forms publication-title: J. Exp. Bot. – volume: 34 start-page: 2835 year: 2020 end-page: 2842 ident: bib32 article-title: Beneficial effects of publication-title: Phytother Res. – volume: 45 start-page: 969 year: 2022 end-page: 984 ident: bib39 article-title: The volatile cedrene from publication-title: Plant Cell Environ. – volume: 6 start-page: e307 year: 2008 end-page: e2735 ident: bib9 article-title: Root system architecture from coupling cell shape to auxin transport publication-title: PLoS Biol. – volume: 14 start-page: 399 year: 2009 end-page: 408 ident: bib62 article-title: Arabidopsis lateral root development: an emerging story publication-title: Trends Plant Sci. – volume: 312 start-page: 914 year: 2006 end-page: 918 ident: bib21 article-title: PIN proteins perform a rate-limiting function in cellular auxin efflux publication-title: Science – volume: 7 start-page: 60 year: 2021 end-page: 72 ident: bib48 article-title: Bacterial seed endophyte shapes disease resistance in rice publication-title: Nat. Plants – volume: 223 start-page: 1420 year: 2019 end-page: 1432 ident: bib55 article-title: A role for the auxin precursor anthranilic acid in root gravitropism via regulation of PIN-FORMED protein polarity and relocalisation in publication-title: New Phytol. – volume: 124 start-page: 33 year: 1997 end-page: 44 ident: bib64 article-title: Organization and cell differentiation in lateral roots of publication-title: Development – volume: 132 start-page: 4521 year: 2005 end-page: 4531 ident: bib20 article-title: Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression publication-title: Development – volume: 12 start-page: 784 year: 2019 end-page: 803 ident: bib11 article-title: The systems biology of lateral root formation: Connecting the dots publication-title: Mol. Plant – volume: 64 start-page: 371 year: 2022 end-page: 392 ident: bib33 article-title: Auxin signaling: Research advances over the past 30 years publication-title: J. Integr. Plant Biol. – volume: 34 start-page: 631 year: 2021 end-page: 644 ident: bib38 article-title: Proteomic analysis demonstrates a molecular dialog between publication-title: Mol. Plant Microbe Interact. – volume: 110 start-page: 14498 year: 2013 end-page: 14503 ident: bib59 article-title: Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root publication-title: Proc. Natl. Acad. Sci. USA – volume: 24 start-page: 826 year: 2019 end-page: 839 ident: bib26 article-title: Lateral root formation in publication-title: Trends Plant Sci. – volume: 44 start-page: 1663 year: 2021 end-page: 1678 ident: bib30 article-title: Volatile compounds from beneficial rhizobacteria publication-title: Plant Cell Environ. – volume: 178 start-page: 1370 year: 2018 end-page: 1389 ident: bib43 article-title: Root gravitropism is regulated by a crosstalk between para-aminobenzoic acid, ethylene, and auxin publication-title: Plant Physiol. – volume: 21 start-page: 312 year: 2023 end-page: 326 ident: bib36 article-title: : a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture publication-title: Nat. Rev. Microbiol. – volume: 25 start-page: 1194 year: 2020 end-page: 1202 ident: bib3 article-title: Sustainable cropping requires adaptation to a heterogeneous rhizosphere publication-title: Trends Plant Sci. – volume: 18 start-page: 148 year: 2019 end-page: 163 ident: bib40 article-title: from publication-title: Microb. Cell Factories – volume: 446 start-page: 640 year: 2007 end-page: 645 ident: bib50 article-title: Mechanism of auxin perception by the TIR1 ubiquitin ligase publication-title: Nature – volume: 41 start-page: 67 year: 2018 end-page: 72 ident: bib16 article-title: Breakout—lateral root emergence in publication-title: Curr. Opin. Plant Biol. – volume: 66 start-page: 4971 year: 2015 end-page: 4982 ident: bib19 article-title: Small molecules unravel complex interplay between auxin biology and endomembrane trafficking publication-title: J. Exp. Bot. – volume: 21 start-page: 187 year: 2016 end-page: 198 ident: bib4 article-title: Signaling in the Rhizosphere publication-title: Trends Plant Sci. – volume: 25 start-page: 331 year: 2023 end-page: 351 ident: bib63 article-title: Intracellular kynurenine promotes acetaldehyde accumulation, further inducing the apoptosis in soil beneficial fungi publication-title: Environ. Microbiol. – volume: 382 start-page: 464 year: 2023 end-page: 471 ident: bib65 article-title: A dirigent protein complex directs lignin polymerization and assembly of the root diffusion barrier publication-title: Science – volume: 23 start-page: 3944 year: 2011 end-page: 3960 ident: bib42 article-title: A small-molecule screen identifies L-Kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in publication-title: Plant Cell – volume: 14 start-page: 2248 year: 2020 end-page: 2260 ident: bib47 article-title: Anthranilic acid from publication-title: ISME J. – volume: 371 year: 2021 ident: bib60 article-title: Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis publication-title: Science – volume: 46 start-page: 17 year: 2009 end-page: 27 ident: bib41 article-title: transcription factor of publication-title: Fungal Genet. Biol. – volume: 149 start-page: 1579 year: 2009 end-page: 1592 ident: bib34 article-title: , a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in publication-title: Plant Physiol. – volume: 2 start-page: a001537 year: 2010 ident: bib14 article-title: Auxin control of root development publication-title: Cold Spring Harbor Perspect. Biol. – volume: 73 year: 2023 ident: 10.1016/j.celrep.2024.114030_bib31 article-title: Compounds from rhizosphere microbes that promote plant growth publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2023.102336 – volume: 77 start-page: 352 year: 2014 ident: 10.1016/j.celrep.2024.114030_bib45 article-title: Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis publication-title: Plant J. doi: 10.1111/tpj.12399 – volume: 69 start-page: 437 year: 2009 ident: 10.1016/j.celrep.2024.114030_bib17 article-title: Hormone interactions during lateral root formation publication-title: Plant Mol. Biol. doi: 10.1007/s11103-008-9417-2 – volume: 3 start-page: 956 year: 2010 ident: 10.1016/j.celrep.2024.114030_bib44 article-title: New Insights into the shikimate and aromatic amino acids biosynthesis pathways in plants publication-title: Mol. Plant doi: 10.1093/mp/ssq048 – volume: 25 start-page: 1194 year: 2020 ident: 10.1016/j.celrep.2024.114030_bib3 article-title: Sustainable cropping requires adaptation to a heterogeneous rhizosphere publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2020.07.006 – volume: 41 start-page: 67 year: 2018 ident: 10.1016/j.celrep.2024.114030_bib16 article-title: Breakout—lateral root emergence in Arabidopsis thaliana publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2017.09.005 – volume: 67 start-page: 619 year: 2016 ident: 10.1016/j.celrep.2024.114030_bib2 article-title: Environmental control of root system biology publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-043015-111848 – volume: 32 year: 2020 ident: 10.1016/j.celrep.2024.114030_bib61 article-title: Antagonistic interaction between auxin and SA signaling pathways regulates bacterial infection through lateral root in Arabidopsis publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108060 – volume: 343 start-page: 178 year: 2014 ident: 10.1016/j.celrep.2024.114030_bib12 article-title: A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis publication-title: Science doi: 10.1126/science.1245871 – volume: 7 start-page: 60 year: 2021 ident: 10.1016/j.celrep.2024.114030_bib48 article-title: Bacterial seed endophyte shapes disease resistance in rice publication-title: Nat. Plants doi: 10.1038/s41477-020-00826-5 – volume: 44 start-page: 1663 year: 2021 ident: 10.1016/j.celrep.2024.114030_bib30 article-title: Volatile compounds from beneficial rhizobacteria Bacillus spp. promote periodic lateral root development in Arabidopsis publication-title: Plant Cell Environ. doi: 10.1111/pce.14021 – volume: 143 start-page: 3328 year: 2016 ident: 10.1016/j.celrep.2024.114030_bib25 article-title: RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis publication-title: Devenir – volume: 21 start-page: 312 year: 2023 ident: 10.1016/j.celrep.2024.114030_bib36 article-title: Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-022-00819-5 – volume: 446 start-page: 640 year: 2007 ident: 10.1016/j.celrep.2024.114030_bib50 article-title: Mechanism of auxin perception by the TIR1 ubiquitin ligase publication-title: Nature doi: 10.1038/nature05731 – volume: 64 start-page: 2541 year: 2013 ident: 10.1016/j.celrep.2024.114030_bib56 article-title: Auxin biosynthesis and storage forms publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert080 – volume: 66 start-page: 4971 year: 2015 ident: 10.1016/j.celrep.2024.114030_bib19 article-title: Small molecules unravel complex interplay between auxin biology and endomembrane trafficking publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv179 – volume: 23 start-page: 3944 year: 2011 ident: 10.1016/j.celrep.2024.114030_bib42 article-title: A small-molecule screen identifies L-Kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.111.089029 – volume: 18 start-page: 450 year: 2013 ident: 10.1016/j.celrep.2024.114030_bib10 article-title: Lateral root development in Arabidopsis: Fifty shades of auxin publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.04.006 – volume: 18 start-page: 148 year: 2019 ident: 10.1016/j.celrep.2024.114030_bib40 article-title: TgSWO from Trichoderma guizhouense NJAU4742 promotes growth in cucumber plants by modifying the root morphology and the cell wall architecture publication-title: Microb. Cell Factories doi: 10.1186/s12934-019-1196-8 – volume: 14 start-page: 589 year: 2002 ident: 10.1016/j.celrep.2024.114030_bib23 article-title: AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling publication-title: Plant Cell doi: 10.1105/tpc.010354 – volume: 46 start-page: 17 year: 2009 ident: 10.1016/j.celrep.2024.114030_bib41 article-title: Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2008.10.008 – volume: 449 start-page: 133 year: 2020 ident: 10.1016/j.celrep.2024.114030_bib37 article-title: Extracellular proteins of Trichoderma guizhouense elicit an immune response in maize (Zea mays) plants publication-title: Plant Soil doi: 10.1007/s11104-020-04435-1 – volume: 14 start-page: 399 year: 2009 ident: 10.1016/j.celrep.2024.114030_bib62 article-title: Arabidopsis lateral root development: an emerging story publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2009.05.002 – volume: 75 start-page: 526 year: 2024 ident: 10.1016/j.celrep.2024.114030_bib28 article-title: Signal communication during microbial modulation of root- system architecture publication-title: J. Exp. Bot. doi: 10.1093/jxb/erad263 – volume: 33 start-page: 529 year: 2017 ident: 10.1016/j.celrep.2024.114030_bib13 article-title: Uncovering gene regulatory networks controlling plant cell differentiation publication-title: Trends Genet. doi: 10.1016/j.tig.2017.05.002 – volume: 6 start-page: e307 year: 2008 ident: 10.1016/j.celrep.2024.114030_bib9 article-title: Root system architecture from coupling cell shape to auxin transport publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060307 – volume: 132 start-page: 4521 year: 2005 ident: 10.1016/j.celrep.2024.114030_bib20 article-title: Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression publication-title: Development doi: 10.1242/dev.02027 – volume: 149 start-page: 1579 year: 2009 ident: 10.1016/j.celrep.2024.114030_bib34 article-title: Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.108.130369 – volume: 59 start-page: 1889 year: 2018 ident: 10.1016/j.celrep.2024.114030_bib52 article-title: Evidence for the involvement of auxin, ethylene and ROS signaling during primary root inhibition of Arabidopsis by the allelochemical benzoic acid publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcy107 – volume: 120 start-page: 1 year: 2023 ident: 10.1016/j.celrep.2024.114030_bib57 article-title: Plant microbiota controls an alternative root branching regulatory mechanism in plants publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2301054120 – volume: 105 start-page: 8790 year: 2008 ident: 10.1016/j.celrep.2024.114030_bib8 article-title: Auxin acts as a local morphogenetic trigger to specify lateral root founder cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0712307105 – volume: 44 start-page: 51 year: 2017 ident: 10.1016/j.celrep.2024.114030_bib6 article-title: Root branching plasticity: collective decision-making results from local and global signalling publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2017.03.001 – volume: 9 start-page: 1963 year: 1997 ident: 10.1016/j.celrep.2024.114030_bib15 article-title: Aux/lAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements publication-title: Plant Cell – start-page: 1 year: 2020 ident: 10.1016/j.celrep.2024.114030_bib49 article-title: Independent tryptophan pathway in Trichoderma asperellum and T. koningiopsis: New insights with bioinformatic and molecular analysis publication-title: bioRxiv – volume: 110 start-page: 14498 year: 2013 ident: 10.1016/j.celrep.2024.114030_bib59 article-title: Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1308412110 – volume: 273 start-page: 948 year: 1996 ident: 10.1016/j.celrep.2024.114030_bib22 article-title: Arabidopsis AUX1 gene : A permease-like regulator of root gravitropism publication-title: Science doi: 10.1126/science.273.5277.948 – volume: 14 start-page: 285 year: 2021 ident: 10.1016/j.celrep.2024.114030_bib53 article-title: MPK14-mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis publication-title: Mol. Plant doi: 10.1016/j.molp.2020.11.011 – volume: 12 start-page: 784 year: 2019 ident: 10.1016/j.celrep.2024.114030_bib11 article-title: The systems biology of lateral root formation: Connecting the dots publication-title: Mol. Plant doi: 10.1016/j.molp.2019.03.015 – volume: 209 start-page: 1496 year: 2016 ident: 10.1016/j.celrep.2024.114030_bib35 article-title: The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning publication-title: New Phytol. doi: 10.1111/nph.13725 – volume: 371 year: 2021 ident: 10.1016/j.celrep.2024.114030_bib60 article-title: Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis publication-title: Science doi: 10.1126/science.abd0695 – volume: 29 start-page: 57 year: 2016 ident: 10.1016/j.celrep.2024.114030_bib58 article-title: Control of root growth and development by reactive oxygen species publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.10.012 – volume: 124 start-page: 33 year: 1997 ident: 10.1016/j.celrep.2024.114030_bib64 article-title: Organization and cell differentiation in lateral roots of Arabidopsis thaliana publication-title: Development doi: 10.1242/dev.124.1.33 – volume: 51 start-page: 1447 year: 2021 ident: 10.1016/j.celrep.2024.114030_bib1 article-title: The current and future studies on plant root development and root microbiota publication-title: Sci. Sin. -Vitae. doi: 10.1360/SSV-2021-0179 – volume: 140 start-page: 4301 year: 2013 ident: 10.1016/j.celrep.2024.114030_bib7 article-title: To branch or not to branch: The role of pre-patterning in lateral root formation publication-title: Devenir – volume: 25 start-page: 331 year: 2023 ident: 10.1016/j.celrep.2024.114030_bib63 article-title: Intracellular kynurenine promotes acetaldehyde accumulation, further inducing the apoptosis in soil beneficial fungi Trichoderma guizhouense NJAU4742 under acid stress publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.16286 – volume: 10 start-page: 946 year: 2008 ident: 10.1016/j.celrep.2024.114030_bib24 article-title: The auxin influx carrier LAX3 promotes lateral root emergence publication-title: Nat. Cell Biol. doi: 10.1038/ncb1754 – volume: 24 start-page: 826 year: 2019 ident: 10.1016/j.celrep.2024.114030_bib26 article-title: Lateral root formation in Arabidopsis: A well-ordered LRexit publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2019.06.015 – volume: 382 start-page: 464 year: 2023 ident: 10.1016/j.celrep.2024.114030_bib65 article-title: A dirigent protein complex directs lignin polymerization and assembly of the root diffusion barrier publication-title: Science doi: 10.1126/science.adi5032 – volume: 312 start-page: 914 year: 2006 ident: 10.1016/j.celrep.2024.114030_bib21 article-title: PIN proteins perform a rate-limiting function in cellular auxin efflux publication-title: Science doi: 10.1126/science.1123542 – volume: 178 start-page: 1370 year: 2018 ident: 10.1016/j.celrep.2024.114030_bib43 article-title: Root gravitropism is regulated by a crosstalk between para-aminobenzoic acid, ethylene, and auxin publication-title: Plant Physiol. doi: 10.1104/pp.18.00126 – volume: 115 start-page: 591 year: 2003 ident: 10.1016/j.celrep.2024.114030_bib18 article-title: Local, efflux-dependent auxin gradients as a common module for plant organ formation publication-title: Cell doi: 10.1016/S0092-8674(03)00924-3 – volume: 34 start-page: 2835 year: 2020 ident: 10.1016/j.celrep.2024.114030_bib32 article-title: Beneficial effects of Trichoderma secondary metabolites on crops publication-title: Phytother Res. doi: 10.1002/ptr.6728 – volume: 14 start-page: 2248 year: 2020 ident: 10.1016/j.celrep.2024.114030_bib47 article-title: Anthranilic acid from Ralstonia solanacearum plays dual roles in intraspecies signalling and inter-kingdom communication publication-title: ISME J. doi: 10.1038/s41396-020-0682-7 – volume: 34 start-page: 631 year: 2021 ident: 10.1016/j.celrep.2024.114030_bib38 article-title: Proteomic analysis demonstrates a molecular dialog between Trichoderma guizhouense NJAU4742 and cucumber (Cucumis sativus L) roots: Role in promoting plant growth publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-08-20-0240-R – volume: 118 year: 2021 ident: 10.1016/j.celrep.2024.114030_bib46 article-title: Naphthylphthalamic acid associates with and inhibits PIN auxin transporters publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2020857118 – volume: 2 start-page: a001537 year: 2010 ident: 10.1016/j.celrep.2024.114030_bib14 article-title: Auxin control of root development publication-title: Cold Spring Harbor Perspect. Biol. doi: 10.1101/cshperspect.a001537 – volume: 64 start-page: 371 year: 2022 ident: 10.1016/j.celrep.2024.114030_bib33 article-title: Auxin signaling: Research advances over the past 30 years publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13225 – volume: 433 start-page: 39 year: 2005 ident: 10.1016/j.celrep.2024.114030_bib54 article-title: The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots publication-title: Nature doi: 10.1038/nature03184 – volume: 108 start-page: 7253 year: 2011 ident: 10.1016/j.celrep.2024.114030_bib51 article-title: Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1006740108 – volume: 21 start-page: 187 year: 2016 ident: 10.1016/j.celrep.2024.114030_bib4 article-title: Signaling in the Rhizosphere publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.01.005 – volume: 153 start-page: 402 year: 2013 ident: 10.1016/j.celrep.2024.114030_bib27 article-title: A mechanism for localized lignin deposition in the endodermis publication-title: Cell doi: 10.1016/j.cell.2013.02.045 – volume: 45 start-page: 969 year: 2022 ident: 10.1016/j.celrep.2024.114030_bib39 article-title: The volatile cedrene from Trichoderma guizhouense modulates Arabidopsis root development through auxin transport and signalling publication-title: Plant Cell Environ. doi: 10.1111/pce.14230 – volume: 223 start-page: 1420 year: 2019 ident: 10.1016/j.celrep.2024.114030_bib55 article-title: A role for the auxin precursor anthranilic acid in root gravitropism via regulation of PIN-FORMED protein polarity and relocalisation in Arabidopsis publication-title: New Phytol. doi: 10.1111/nph.15877 – volume: 220 start-page: 57 year: 2018 ident: 10.1016/j.celrep.2024.114030_bib5 article-title: Root plasticity for maintenance of productivity under abiotic stressed soil environments in rice: Progress and prospects publication-title: Field Crops Res. doi: 10.1016/j.fcr.2016.06.023 – volume: 73 start-page: 3711 year: 2022 ident: 10.1016/j.celrep.2024.114030_bib29 article-title: Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/erac074 |
SSID | ssj0000601194 |
Score | 2.477889 |
Snippet | Trichoderma spp. have evolved the capacity to communicate with plants by producing various secondary metabolites (SMs). Nonhormonal SMs play important roles in... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 114030 |
SubjectTerms | anthranilic acid Arabidopsis - growth & development Arabidopsis - metabolism auxin biosynthesis auxin signaling auxin transport Cell Wall - metabolism cell wall remodeling CP: Plants endodermis Gene Expression Regulation, Plant Indoleacetic Acids - metabolism lateral root development ortho-Aminobenzoates - metabolism Plant Roots - growth & development Plant Roots - metabolism Reactive Oxygen Species - metabolism ROS burst secondary metabolite Signal Transduction Trichoderma - growth & development Trichoderma - metabolism Trichoderma spp |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEJTXUoqMxNViEzt2cqSoqxUHkFAr9WaNHxFBIa32AfRH8J-ZsZNlOaC9cMkhiu2RZ-z5Jh5_w9ibeVsH4r0SFE0LJUEKcFGLunYIF1RsHCS2z496eaU-XFfXe6W-KCcs0wPniXsbwUTfeBW8KZXTCgJoCSpg7OCMLxMTKPq8vWAq78HEZaamu3IpocvHfhWJorJUxJCbEp_3fFGi7P_LJf0LcibXs3jIHoyYkb_Lsj5i9-Jwwo5zFcm7x-zXJe5lX6im2TcQa4KBiCI5UAUEGLq-8xx8F_htSryLa94D3TruOWLmDQ9_kob49w44bH92A6esDqCL6thN4J_PPy0XAoN3NIPA4xDyWD2nv_78B-BjFVNJHWzxhF0tLi7fL8VYZUF4ZdRGVK13ys9DSSeCrW58KNrWV1F6g2AKw5kSfKXrtgqxMKDaqGFeRtMaXfkGFS2fsqPhZojPGS-0Vq4OuGc4pUpQNcTCqwY7jc5pV8-YnObb-pGCnCph9HbKNftqs5YsaclmLc2Y2LW6zRQcB74_J1XuviUC7fQCzcqOZmUPmdWMmckQ7IhFMsbArroDw7-e7MbiUiVNwBBvtmsrES9VRjaqmLFn2aB2QsoaoSuGni_-h_Cn7D4JRIdepXzJjjarbTxD7LRxr9Iy-Q3FsRol priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLQqGX0nezfaBCryKxJcvycbM0hB5aaHchNzF6uHVxnZBHHz9i_3NnZDvtHspCLwYbvfCMR99YM98w9mZWm0C8V4K8aaEkSAEuamGMQ7igYuUgsX2-18sr9W5VrE7YxZgLQ2GVg-3vbXqy1sOT6fA2p5ummX7K0XfB3amkKEhZGErik8qkJL7V_PifhfhGslQPkdoL6jBm0KUwLx_bbSTiylwRb24Kh_5rh0pE_jc2qn8B0bQhLe6zewOS5Of9Yh-wk9g9ZHf62pK_HrHrS7RwX6jS2TcQOwKHiC05UF0E6Jq28Rx8E_gmhePFHW-BcpFbjkh6z8OfUCL-vQEOh59NxynWAyh9HYcJ_OP8w3Ih0KVH5Qg8dqGfq-V0FsB_AF62MRXawR6P2dXi7eXFUgy1F4RXpdqLovZO-VnI6Zyw1pUPWV37IkpfIsRCJycHX2hTFyFmJag6apjlsaxLXfgKxS-fsNNu3cVnjGdaK2cCWhKnVA7KQMy8qnDQ6Jx2ZsLk-L6tH4jJqT5Ga8cItK-2l5IlKdleShMmjr02PTHHLe3nJMpjW6LVTg_W28920CsboYy-8ip41CqnFQTQElRAR9WVPlcTVo6KYG9oKQ7V3DL961FvLH7AJAno4vqwsxJRVFHKSmUT9rRXqOMipUFAiw7p2X_P-5zdpTs6_8rlC3a63x7iS4RRe_cqfSe_AT3WG9M priority: 102 providerName: Elsevier |
Title | Trichoderma-secreted anthranilic acid promotes lateral root development via auxin signaling and RBOHF-induced endodermal cell wall remodeling |
URI | https://dx.doi.org/10.1016/j.celrep.2024.114030 https://www.ncbi.nlm.nih.gov/pubmed/38551966 https://www.proquest.com/docview/3022573941 https://doaj.org/article/ea7ec9c4dc724b64ada63a4d026b7c24 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA7riuCLeHe8LBF8jUzTNGkfRBxxGAUVZAfmLZxcqpXaWTszuvsj_M-e08ssCy6LL4WWXNqcc5LvNCffYezFtMwD8V4J8qaFSiEV4KIWee4QLqhYOOjYPj_pxVJ9WGWrAzbmbB0GcPNP147ySS3b-uXpz7PXaPCvzmO1fKzbSOyTUhH5LSruNXYd1yZDpvpxAPz93EwcZ7TVLCXFckllxvN0lzR0Yb3qaP0vLFuXwdJueZrfZrcGXMnf9Ipwhx3E5i670WeaPLvH_hzjfPeN8p79ALEhqIhIkwNlSYCmqivPwVeBn3TBeXHDa6CTyTVHXL3l4TywiP-qgMPutGo4RX4AHWbHZgL_Mvu8mAt08FFVAo9N6PuqOe0M8N-AlzZ2aXewxn22nL87frsQQyYG4ZVRW5GV3ik_DZJ2DUtd-JCUpc9i6g0CLnR5JPhM52UWYmJAlVHDVEZTGp35ApUhfcAOm3UTHzGeaK1cHnBecUpJUDnExKsCG43OaZdPWDqOt_UDTTlly6jtGI_23fZSsiQl20tpwsS-1klP03FF-RmJcl-WSLa7B-v2qx1s1kYw0RdeBW-kclpBAJ2CCui2OuOlmjAzKoId8EqPQ7Cp6orun496Y9GcSRLQxPVuY1PEVJlJC5VM2MNeofYvmeYIb9E9ffyfH_uE3aQ72gOT6VN2uG138RlCqa076n5B4PX9anbUWcpfTpkeZA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiDflaSSuVjexYydHuqLqwrJI0JV6i8aPQFBIqz54_Aj-MzNOUtgDWolLDo5f8kzG38Tjbxh7eVTlnnivBHnTQkmQAmzQIs8twgUVCguR7fNMz87Vm0W2OGDHw10YCqvsbX9n06O17kvG_WqOV3U9_pii74K7k6EoSJnlxRV2FdGAofwNJ4vJ_kcLEY4kMSEiNRDUYrhCF-O8XGjWgZgrU0XEuTEe-q8tKjL5X9ip_oVE4440vcVu9lCSv-pme5sdhPYOu9Yll_x5l_2ao4n7TKnOvoLYEDpEcMmBEiNAWze14-Bqz1cxHi9seAN0GbnhCKW33P-JJeLfauCw-1G3nII9gO6vYzeef5i8n00F-vSoHZ6H1ndjNZwOA_h3wMc6xEw72OIeO5--nh_PRJ98QThl1FZklbPKHfmUDgorXTifVJXLgnQGMRZ6OSm4TOdV5kNiQFVBw1EaTGV05gqUv7zPDttlGx4ynmitbO7RlFilUlA5hMSpAjsN1mqbj5gc1rt0PTM5JchoyiEE7UvZSakkKZWdlEZM7FutOmaOS-pPSJT7usSrHQuW609lr1hlABNc4ZR3qFZWK_CgJSiPnqo1LlUjZgZFKC-oKXZVXzL8i0FvSvyCSRLQhuVuU0qEUZmRhUpG7EGnUPtJyhwRLXqkj_573Ofs-mz-7rQ8PTl7-5jdoDd0GJbKJ-xwu96Fp4iptvZZ_GZ-A3sbHvI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trichoderma-secreted+anthranilic+acid+promotes+lateral+root+development+via+auxin+signaling+and+RBOHF-induced+endodermal+cell+wall+remodeling&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Chen%2C+Yu&rft.au=Fu%2C+Yansong&rft.au=Xia%2C+Yanwei&rft.au=Miao%2C+Youzhi&rft.date=2024-04-23&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=43&rft.issue=4&rft.spage=114030&rft_id=info:doi/10.1016%2Fj.celrep.2024.114030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2024_114030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |