Autophagy and apoptosis mediated nano-copper-induced testicular damage

Nano-copper has been increasingly employed in various products. In previous studies, we showed that nano-copper caused damage in the rat testis, but it remains unclear whether the toxic reaction can affect the reproductive function. In this study, following 28 d of exposure to nano-copper at a dose...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 229; p. 113039
Main Authors Chen, Helin, Wang, Yanyan, Luo, Jie, Kang, Min, Hou, Jin, Tang, Ruoping, Zhao, Ling, Shi, Fei, Ye, Gang, He, Xiaoli, Cui, Hengmin, Guo, Hongrui, Li, Yinglun, Tang, Huaqiao
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.01.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nano-copper has been increasingly employed in various products. In previous studies, we showed that nano-copper caused damage in the rat testis, but it remains unclear whether the toxic reaction can affect the reproductive function. In this study, following 28 d of exposure to nano-copper at a dose of 44, 88, and 175 mg/kg/day, there was a decrease in sperm quality, fructose content, and the secretion of sex hormones. Nano-copper also increased the level of oxidative stress, sperm malformation rate, and induced abnormal structural changes in testicular tissue. Moreover, Nano-copper upregulated the expression of apoptosis-related protein Bax and autophagy-related protein Beclin, and downregulated the expression of Bcl2 and p62. Furthermore, nano-copper (175 mg/kg) downregulated the protein expression of AMPK, p-AKT, mTOR, p-mTOR, p-4E-BP1, p70S6K, and p-p70S6K, and upregulated the protein expression of p-AMPK. Therefore, nano-copper induced damage in testicular tissues and spermatogenesis is highly related to cell apoptosis and autophagy by regulating the Akt/mTOR signaling pathway. In summary, excess exposure to nano-copper may induce testicular apoptosis and autophagy through AKT/mTOR signaling pathways, and damage the reproductive system in adult males, which is associated with oxidative stress in the testes. •Exposure to nano-copper cloud decrease sperm concentration and motility and increase sperm malformation.•Exposure to nano-copper induced testicular histopathological aberrations and oxidative stress.•Nano-copper induced testicular apoptosis and autophagy through AKT/mTOR signaling pathways.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2021.113039