You See What You Smell: Preferential Processing of Chemosensory Satiety Cues and Its Impact on Body Shape Perception

The current study examines neural responses to satiety- and fasting-related volatiles and their effect on the processing of body shapes. Axillary sweat was sampled with cotton pads from 10 individuals after 12 h of fasting, and after having consumed a standard breakfast. Pure cotton pads served as t...

Full description

Saved in:
Bibliographic Details
Published inBrain sciences Vol. 11; no. 9; p. 1152
Main Authors Pause, Bettina M., Schäfer, Annika S., Hoenen, Matthias, Lübke, Katrin T., Stockhorst, Ursula
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 30.08.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The current study examines neural responses to satiety- and fasting-related volatiles and their effect on the processing of body shapes. Axillary sweat was sampled with cotton pads from 10 individuals after 12 h of fasting, and after having consumed a standard breakfast. Pure cotton pads served as the control. The chemosensory stimuli were presented to 20 participants (via a constant-flow olfactometer) exclusively, and additionally as context to images of overweight and underweight avatars. EEG was recorded (61 electrodes), and chemosensory (CSERPs; P1, N1, P2, P3) and visual event-related potentials (VERPs; N1, P2, P3a, P3b) were analyzed. The amplitudes of all positive CSERP components differed more strongly from cotton in response to chemosensory satiety cues as compared to fasting cues (P1: p = 0.023, P2: p = 0.083, P3: p = 0.031), paralleled by activity within the middle frontal and temporal gyrus. Overweight compared to underweight body shapes tended to elicit larger VERP P2 amplitudes (p = 0.068), and chemosensory satiety cues amplified the VERP amplitudes in response to any body shape (P2, P3a, P3b; all ps ≤ 0.017) as compared to the cotton control. The results indicate that chemosensory satiety cues transmit complex social information, overriding the processing of analogous visual input.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2076-3425
2076-3425
DOI:10.3390/brainsci11091152