Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration

The loss of dopaminergic neurones in the substantia nigra with Parkinson’s disease may result from inflammation-induced proliferation of microglia and reactive macrophages expressing inducible nitric oxide synthase (iNOS). We have investigated the effects of the supranigral administration of lipopol...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 110; no. 1; pp. 49 - 58
Main Authors Iravani, M.M, Kashefi, K, Mander, P, Rose, S, Jenner, P
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2002
Elsevier
Subjects
Rat
Online AccessGet full text

Cover

Loading…
More Information
Summary:The loss of dopaminergic neurones in the substantia nigra with Parkinson’s disease may result from inflammation-induced proliferation of microglia and reactive macrophages expressing inducible nitric oxide synthase (iNOS). We have investigated the effects of the supranigral administration of lipopolysaccharide on iNOS-immunoreactivity, 3-nitrotyrosine formation and tyrosine hydroxylase-immunoreactive neuronal number, and retrogradely labelled fluorogold-positive neurones in the ventral mesencephalon in male Wistar rats. Following supranigral lipopolysaccharide injection, 16–18 h previously, there was intense expression of NADPH-diaphorase and iNOS-immunoreactivity in non-neuronal, macrophage-like cells. This was accompanied by intense expression of glial fibrillary acidic protein-immunoreactive astrocytosis in the substantia nigra. There were also significant reductions in the number of tyrosine hydroxylase(50–60%)- and fluorogold (65–75%)-positive neurones in the substantia nigra. In contrast, tyrosine hydroxylase-immunoreactivity in the ventral tegmental area was not altered. Pre-treatment of animals with the iNOS inhibitor, S-methylisothiourea (10 mg kg −1, i.p.), led to a significant reduction of lipopolysaccharide-induced cell death. Similar reduction of tyrosine hydroxylase-immunoreactivity and fluorogold-labelled neurones in the substantia nigra following lipopolysaccharide administration suggests dopaminergic cell death rather than down-regulation of tyrosine hydroxylase. We conclude that the expression of iNOS- and 3-nitrotyrosine-immunoreactivity and reduction of cell death by S-methylisothiourea suggest the effects of lipopolysaccharide may be nitric oxide-mediated, although other actions of lipopolysaccharide (independent of iNOS induction) cannot be ruled out.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0306-4522
1873-7544
DOI:10.1016/S0306-4522(01)00562-0