Intrauterine growth restriction in piglets alters blood cell counts and impairs cytokine responses in peripheral mononuclear cells 24 days post-partum

Large litter sizes have resulted in more piglets being exposed to intrauterine growth restriction (IUGR). Growth restriction during fetal life is linked with lower growth efficiency and increased susceptibility to infections in postnatal life and IUGR may associate with an altered innate immune syst...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; p. 4683
Main Authors Amdi, Charlotte, Lynegaard, Julie C., Thymann, Thomas, Williams, Andrew R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.03.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Large litter sizes have resulted in more piglets being exposed to intrauterine growth restriction (IUGR). Growth restriction during fetal life is linked with lower growth efficiency and increased susceptibility to infections in postnatal life and IUGR may associate with an altered innate immune system. We investigated the haematological, thromboelastography and plasma biochemical profiles of IUGR and normal piglets as well as cytokine responses in peripheral blood mononuclear cells stimulated with lipopolysaccharide (LPS) at 24 days of age. Piglets were classified at birth based on their head morphology as either IUGR or normal. The present study showed a modulation of the immune function of IUGR pigs, characterized by an increase in neutrophil percentage and fibrinogen levels but a decrease in CD4+ T-cells. A lower level of LPS-induced IL-1β production was evident in IUGR pigs, suggesting immunological hypo-responsiveness. Furthermore, higher levels of reticulocytes, MCV and MCH and lower levels of erythrocytes in IUGR pigs suggest altered bone marrow hematopoiesis. All together, the results suggest a moderate suppression of the immune response of IUGR piglets, which may have implications for resistance to pathogen challenges in the post-weaning period. Serum metabolites and blood clotting profile did not differ between IUGR and normal piglets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-61623-w