Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive functions. Currently, there are no effective treatments for AD, underscoring the importance of identifying individuals in the preclinical stages of mild cognitive impairment (MCI) to enable...
Saved in:
Published in | Frontiers in neuroscience Vol. 17; p. 1221401 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Frontiers Research Foundation
07.09.2023
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive functions. Currently, there are no effective treatments for AD, underscoring the importance of identifying individuals in the preclinical stages of mild cognitive impairment (MCI) to enable early interventions. Among the neuropathological events associated with the onset of the disease is the accumulation of amyloid protein in the brain, which correlates with decreased levels of A
β
42 peptide in the cerebrospinal fluid (CSF). Consequently, the development of non-invasive, low-cost, and easy-to-administer proxies for detecting A
β
42 positivity in CSF becomes particularly valuable. A promising approach to achieve this is spontaneous speech analysis, which combined with machine learning (ML) techniques, has proven highly useful in AD. In this study, we examined the relationship between amyloid status in CSF and acoustic features derived from the description of the Cookie Theft picture in MCI patients from a memory clinic. The cohort consisted of fifty-two patients with MCI (mean age 73 years, 65% female, and 57% positive amyloid status). Eighty-eight acoustic parameters were extracted from voice recordings using the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), and several ML models were used to classify the amyloid status. Furthermore, interpretability techniques were employed to examine the influence of input variables on the determination of amyloid-positive status. The best model, based on acoustic variables, achieved an accuracy of 75% with an area under the curve (AUC) of 0.79 in the prediction of amyloid status evaluated by bootstrapping and Leave-One-Out Cross Validation (LOOCV), outperforming conventional neuropsychological tests (AUC = 0.66). Our results showed that the automated analysis of voice recordings derived from spontaneous speech tests offers valuable insights into AD biomarkers during the preclinical stages. These findings introduce novel possibilities for the use of digital biomarkers to identify subjects at high risk of developing AD. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors have contributed equally to this work Edited by: I-Shiang Tzeng, National Taipei University, Taiwan Reviewed by: Masaru Tanaka, University of Szeged (ELKH-SZTE), Hungary; Gang Wang, Shanghai Jiao Tong University, China |
ISSN: | 1662-453X 1662-4548 1662-453X |
DOI: | 10.3389/fnins.2023.1221401 |