Ultrahigh-performance supercritical fluid chromatography – mass spectrometry for the qualitative analysis of metabolites covering a large polarity range

•Seventy-eight metabolites covering a large polarity range were investigated.•Unified chromatography allows the comprehensive UHPSFC/MS analysis of biomolecules.•The effect of columns, additives and ion source were studied.•Higher identification confidence was achieved by MSE for human plasma.•5823...

Full description

Saved in:
Bibliographic Details
Published inJournal of Chromatography A Vol. 1665; p. 462832
Main Authors Antonelli, Michela, Holčapek, Michal, Wolrab, Denise
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 22.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:•Seventy-eight metabolites covering a large polarity range were investigated.•Unified chromatography allows the comprehensive UHPSFC/MS analysis of biomolecules.•The effect of columns, additives and ion source were studied.•Higher identification confidence was achieved by MSE for human plasma.•5823 metabolites were identified in human plasma using MSDIAL. The applicability of ultrahigh-performance supercritical fluid chromatography coupled with mass spectrometry (UHPSFC/MS) for the qualitative analysis of metabolites with a wide polarity range (log P: −3.89–18.95) was evaluated using a representative set of 78 standards belonging to nucleosides, biogenic amines, carbohydrates, amino acids, and lipids. The effects of the gradient shape and the percentage of water (1, 2, and 5%) were investigated on the Viridis BEH column. The screening of eight stationary phases was performed for columns with different interaction sites, such as hydrogen bonding, hydrophobic, π-π, or anionic exchange type interactions. The highest number of compounds (67) of the set studied was detected on the Torus Diol column, which provided a resolution parameter of 39. The DEA column had the second best performance with 58 detected standards and the resolution parameter of 54. The overall performance of other parameters, such as selectivity, peak height, peak area, retention time stability, asymmetry factor, and mass accuracy, led to the selection of the Diol column for the final method. The comparison of additives showed that ammonium acetate gave a superior sensitivity over ammonium formate. Moreover, the influence of the ion source on the ionization efficiency was studied by employing atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI). The results proved the complementarity of both ionization techniques, but also the superior ionization capacity of the ESI source in the negative ion mode, for which 53% of the analytes were detected compared to only 7% for the APCI source. Finally, optimized analytical conditions were applied to the analysis of a pooled human plasma sample. 44 compounds from the preselected set were detected in human plasma using ESI-UHPSFC/MS in MSE mode considering both ionization modes.
ISSN:0021-9673
1873-3778
DOI:10.1016/j.chroma.2022.462832