Automatic Lung Health Screening Using Respiratory Sounds
Significant changes have been made on audio-based technologies over years in several different fields. Healthcare is no exception. One of such avenues is health screening based on respiratory sounds. In this paper, we developed a tool to detect respiratory sounds that come from respiratory infection...
Saved in:
Published in | Journal of medical systems Vol. 45; no. 2; p. 19 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Significant changes have been made on audio-based technologies over years in several different fields. Healthcare is no exception. One of such avenues is health screening based on respiratory sounds. In this paper, we developed a tool to detect respiratory sounds that come from respiratory infection carrying patients. Linear Predictive Cepstral Coefficient (LPCC)-based features were used to characterize such audio clips. With Multilayer Perceptron (MLP)-based classifier, in our experiment, we achieved the highest possible accuracy of 99.22% that was tested on a publicly available respiratory sounds dataset (ICBHI17) (Rocha et al.
Physiol. Meas.
40(3):035,001
20
) of size 6800+ clips. In addition to other popular machine learning classifiers, our results outperformed common works that exist in the literature. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0148-5598 1573-689X |
DOI: | 10.1007/s10916-020-01681-9 |