Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia

Ischemia-induced neuronal damage has been linked to elevated production of reactive oxygen species (ROS) both in animal models and in humans. NADPH oxidase enzymes (NOX-es) are a major enzymatic source of ROS, but their role in brain ischemia has not yet been investigated. The present study was carr...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 132; no. 2; pp. 233 - 238
Main Authors Vallet, P., Charnay, Y., Steger, K., Ogier-Denis, E., Kovari, E., Herrmann, F., Michel, J.-P., Szanto, I.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 2005
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ischemia-induced neuronal damage has been linked to elevated production of reactive oxygen species (ROS) both in animal models and in humans. NADPH oxidase enzymes (NOX-es) are a major enzymatic source of ROS, but their role in brain ischemia has not yet been investigated. The present study was carried out to examine the expression of NOX4, one of the new NADPH oxidase isoforms in a mouse model of focal permanent brain ischemia. We demonstrate that NOX4 is expressed in neurons using in situ hybridization and immunohistochemistry. Ischemia, induced by middle cerebral artery occlusion resulted in a dramatic increase in cortical NOX4 expression. Elevated NOX4 mRNA levels were detectable as early as 24 h after the onset of ischemia and persisted throughout the 30 days of follow-up period, reaching a maximum between days 7 and 15. The early onset suggests neuronal reaction, while the peak period corresponds to the time of neoangiogenesis occurring mainly in the peri-infarct region. The occurrence of NOX4 in the new capillaries was confirmed by immunohistochemical staining. In summary, our paper reports the presence of the ROS producing NADPH oxidase NOX4 in neurons and demonstrates an upregulation of its expression under ischemic conditions. Moreover, a role for NOX4 in ischemia/hypoxia-induced angiogenesis is suggested by its prominent expression in newly formed capillaries.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2004.12.038