Deep Learning Based Drug Screening for Novel Coronavirus 2019-nCov

A novel coronavirus, called 2019-nCoV, was recently found in Wuhan, Hubei Province of China, and now is spreading across China and other parts of the world. Although there are some drugs to treat 2019-nCoV, there is no proper scientific evidence about its activity on the virus. It is of high signifi...

Full description

Saved in:
Bibliographic Details
Published inInterdisciplinary sciences : computational life sciences Vol. 12; no. 3; pp. 368 - 376
Main Authors Zhang, Haiping, Saravanan, Konda Mani, Yang, Yang, Hossain, Md. Tofazzal, Li, Junxin, Ren, Xiaohu, Pan, Yi, Wei, Yanjie
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2020
Springer Nature B.V
Subjects
RNA
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel coronavirus, called 2019-nCoV, was recently found in Wuhan, Hubei Province of China, and now is spreading across China and other parts of the world. Although there are some drugs to treat 2019-nCoV, there is no proper scientific evidence about its activity on the virus. It is of high significance to develop a drug that can combat the virus effectively to save valuable human lives. It usually takes a much longer time to develop a drug using traditional methods. For 2019-nCoV, it is now better to rely on some alternative methods such as deep learning to develop drugs that can combat such a disease effectively since 2019-nCoV is highly homologous to SARS-CoV. In the present work, we first collected virus RNA sequences of 18 patients reported to have 2019-nCoV from the public domain database, translated the RNA into protein sequences, and performed multiple sequence alignment. After a careful literature survey and sequence analysis, 3C-like protease is considered to be a major therapeutic target and we built a protein 3D model of 3C-like protease using homology modeling. Relying on the structural model, we used a pipeline to perform large scale virtual screening by using a deep learning based method to accurately rank/identify protein–ligand interacting pairs developed recently in our group. Our model identified potential drugs for 2019-nCoV 3C-like protease by performing drug screening against four chemical compound databases (Chimdiv, Targetmol-Approved_Drug_Library, Targetmol-Natural_Compound_Library, and Targetmol-Bioactive_Compound_Library) and a database of tripeptides. Through this paper, we provided the list of possible chemical ligands (Meglumine, Vidarabine, Adenosine, d -Sorbitol, d -Mannitol, Sodium_gluconate, Ganciclovir and Chlorobutanol) and peptide drugs (combination of isoleucine, lysine and proline) from the databases to guide the experimental scientists and validate the molecules which can combat the virus in a shorter time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1913-2751
1867-1462
1867-1462
DOI:10.1007/s12539-020-00376-6