Combined Effects of Climate Change and Bank Stabilization on Shallow Water Habitats of Chinook Salmon
Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low‐sloped beaches to these combined effects in the lower Willamette River, Oregon, an...
Saved in:
Published in | Conservation biology Vol. 27; no. 6; pp. 1201 - 1211 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Scientific Publications
01.12.2013
Blackwell Publishing Ltd Wiley Periodicals Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low‐sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act‐mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999–2009) median river stages during peak subyearling occupancy (April–June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April–June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17–32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life‐history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions’ long‐term effects. Efectos Combinados del Cambio Climático y la Estabilización de Bordes de Ríos Hábitats de Aguas Poco Profundas del Salmón Chinook |
---|---|
AbstractList | Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low‐sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act‐mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999–2009) median river stages during peak subyearling occupancy (April–June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April–June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17–32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life‐history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions’ long‐term effects.
Efectos Combinados del Cambio Climático y la Estabilización de Bordes de Ríos Hábitats de Aguas Poco Profundas del Salmón Chinook
Resumen
Todavía permanecen obstáculos significativos en la habilidad para estimar el cambio de hábitat bajo los efectos combinados de la variabilidad natural, el cambio climático y la actividad humana. Examinamos los efectos anticipados en el agua poco profunda sobre playones con poca inclinación a estos efectos combinados en la parte baja del río Willamette, Oregon, un área altamente alterada por el desarrollo. Una propuesta para estabilizar algunos bordes con rocas grandes (escolleras) alteraría las áreas de poca profundidad, un hábitat importante para el salmón Chinook (Oncorhynchus tshawytscha), una especie amenazada, y estaría sujeta a revisiones mandadas por el Acta Estadunidense de Especies Amenazadas. En el cauce principal, salmones menores al año parecer ocupar preferencialmente áreas que fluctúan con etapas de río. Estimamos los efectos con un modelo geoespacial y proyecciones futuras de caudales de río. La media de las etapas de río recientes (1999–2009) durante ocupaciones críticas de salmones menores al año (abril‐junio) maximizó el área de playones con poca profundidad en la parte baja del cauce principal. El área de poca profundidad río arriba se maximizó más en etapas más bajas del río de lo que ha ocurrido recientemente. Etapas más altas del río en abril‐junio, resultantes de incrementos de flujo predichos para los 2080s, disminuyeron el área de playones de poca profundidad de 17–32%. Con base en los flujos proyectados para 2080, más del 15% del área de playones de poca profundidad fue desplazada por la escollera. El área de playones de poca profundidad perdida por la escollera representó hasta el 1.6% del total de la boca del río hasta 12.9 Km río arriba. Las reducciones en el área de playones de poca profundidad pueden restringir la alimentación de los salmones, sus descansos y refugios contra depredadores y reducir potencialmente las oportunidades de expresión del rango total de estrategias de historias de vida. Aunque el análisis del cambio climático proporcionó información útil, los análisis detallados son prohibitivos en la escala de proyecto para la multitud de proyectos pequeños revisados anualmente. Los beneficios de nuestro estudio para los administradores de recursos incluyen un contexto geográfico más amplio para revisar proyectos pequeños similares en relación con el cambio climático, una aproximación para analizarlos efectos acumulativos de acciones similares y la estimación de los efectos a largo plazo de las acciones. Abstract Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low‐sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act‐mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999–2009) median river stages during peak subyearling occupancy (April–June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April–June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17–32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life‐history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions’ long‐term effects . Efectos Combinados del Cambio Climático y la Estabilización de Bordes de Ríos Hábitats de Aguas Poco Profundas del Salmón Chinook Resumen Todavía permanecen obstáculos significativos en la habilidad para estimar el cambio de hábitat bajo los efectos combinados de la variabilidad natural, el cambio climático y la actividad humana. Examinamos los efectos anticipados en el agua poco profunda sobre playones con poca inclinación a estos efectos combinados en la parte baja del río Willamette, Oregon, un área altamente alterada por el desarrollo. Una propuesta para estabilizar algunos bordes con rocas grandes (escolleras) alteraría las áreas de poca profundidad, un hábitat importante para el salmón Chinook (Oncorhynchus tshawytscha), una especie amenazada, y estaría sujeta a revisiones mandadas por el Acta Estadunidense de Especies Amenazadas. En el cauce principal, salmones menores al año parecer ocupar preferencialmente áreas que fluctúan con etapas de río. Estimamos los efectos con un modelo geoespacial y proyecciones futuras de caudales de río. La media de las etapas de río recientes (1999–2009) durante ocupaciones críticas de salmones menores al año (abril‐junio) maximizó el área de playones con poca profundidad en la parte baja del cauce principal. El área de poca profundidad río arriba se maximizó más en etapas más bajas del río de lo que ha ocurrido recientemente. Etapas más altas del río en abril‐junio, resultantes de incrementos de flujo predichos para los 2080s, disminuyeron el área de playones de poca profundidad de 17–32%. Con base en los flujos proyectados para 2080, más del 15% del área de playones de poca profundidad fue desplazada por la escollera. El área de playones de poca profundidad perdida por la escollera representó hasta el 1.6% del total de la boca del río hasta 12.9 Km río arriba. Las reducciones en el área de playones de poca profundidad pueden restringir la alimentación de los salmones, sus descansos y refugios contra depredadores y reducir potencialmente las oportunidades de expresión del rango total de estrategias de historias de vida. Aunque el análisis del cambio climático proporcionó información útil, los análisis detallados son prohibitivos en la escala de proyecto para la multitud de proyectos pequeños revisados anualmente. Los beneficios de nuestro estudio para los administradores de recursos incluyen un contexto geográfico más amplio para revisar proyectos pequeños similares en relación con el cambio climático, una aproximación para analizarlos efectos acumulativos de acciones similares y la estimación de los efectos a largo plazo de las acciones. Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions' long-term effects. [PUBLICATION ABSTRACT] Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions' long-term effects. Efectos Combinados del Cambio Climático y la Estabilización de Bordes de Ríos Hábitats de Aguas Poco Profundas del Salmón Chinook. Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions' long-term effects. Todavía permanecen obstáculos significativos en la habilidad para estimar el cambio de hábitat bajo los efectos combinados de la variabilidad natural, el cambio climático y la actividad humana. Examinamos los efectos anticipados en el agua poco profunda sobre playones con poca inclinación a estos efectos combinados en la parte baja del río Willamette, Oregon, un área altamente alterada por el desarrollo. Una propuesta para estabilizar algunos bordes con rocas grandes (escolleras) alteraría las áreas de poca profundidad, un hábitat importante para el salmón Chinook (Oncorhynchus tshawytscha), una especie amenazada, y estaría sujeta a revisiones mandadas por el Acta Estadunidense de Especies Amenazadas. En el cauce principal, salmones menores al año parecer ocupar preferencialmente áreas que fluctúan con etapas de río. Estimamos los efectos con un modelo geoespacial y proyecciones futuras de caudales de río. La media de las etapas de río recientes (1999-2009) durante ocupaciones críticas de salmones menores al año (abril-junio) maximizó el área de playones con poca profundidad en la parte baja del cauce principal. El área de poca profundidad río arriba se maximizó más en etapas bajas del río de lo que ha ocurrido recientemente. Etapas más altas del río en abril-junio, resultantes de incrementos de flujo predichos para los 2080s, disminuyeron el área de playones de poca profundidad de 17-32%. Con base en los flujos proyectados para 2080, más del 15% del área de playones de poca profundidad fue desplazada por la escollera. El área de playones de poca profundidad perdida por la escollera representó hasta el 1.6% del total de la boca del río hasta 12.9 Km río arriba. Las reducciones en el área de playones de poca profundidad pueden restringir la alimentación de los salmones, sus descansos y refugios contra depredadores y reducir potencialmente las oportunidades de expresión del rango total de estrategias de historias de vida. Aunque el análisis del cambio climático proporcionó información útil, los análisis detallados son prohibitivos en la escala de proyecto para la multitud de proyectos pequeños revisados anualmente. Los beneficios de nuestro estudio para los administradores de recursos incluyen un contexto geográfico más amplio para revisar proyectos pequeños similares en relación con el cambio climático, una aproximación para analizarlos efectos acumulativos de acciones similares y la estimación de los efectos a largo plazo de las acciones. Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions' long-term effects.Original Abstract: Efectos Combinados del Cambio Climatico y la Estabilizacion de Bordes de Rios Habitats de Aguas Poco Profundas del Salmon Chinook Todavia permanecen obstaculos significativos en la habilidad para estimar el cambio de habitat bajo los efectos combinados de la variabilidad natural, el cambio climatico y la actividad humana. Examinamos los efectos anticipados en el agua poco profunda sobre playones con poca inclinacion a estos efectos combinados en la parte baja del rio Willamette, Oregon, un area altamente alterada por el desarrollo. Una propuesta para estabilizar algunos bordes con rocas grandes (escolleras) alteraria las areas de poca profundidad, un habitat importante para el salmon Chinook (Oncorhynchus tshawytscha), una especie amenazada, y estaria sujeta a revisiones mandadas por el Acta Estadunidense de Especies Amenazadas. En el cauce principal, salmones menores al ano parecer ocupar preferencialmente areas que fluctuan con etapas de rio. Estimamos los efectos con un modelo geoespacial y proyecciones futuras de caudales de rio. La media de las etapas de rio recientes (1999-2009) durante ocupaciones criticas de salmones menores al ano (abril-junio) maximizo el area de playones con poca profundidad en la parte baja del cauce principal. El area de poca profundidad rio arriba se maximizo mas en etapas mas bajas del rio de lo que ha ocurrido recientemente. Etapas mas altas del rio en abril-junio, resultantes de incrementos de flujo predichos para los 2080s, disminuyeron el area de playones de poca profundidad de 17-32%. Con base en los flujos proyectados para 2080, mas del 15% del area de playones de poca profundidad fue desplazada por la escollera. El area de playones de poca profundidad perdida por la escollera represento hasta el 1.6% del total de la boca del rio hasta 12.9 Km rio arriba. Las reducciones en el area de playones de poca profundidad pueden restringir la alimentacion de los salmones, sus descansos y refugios contra depredadores y reducir potencialmente las oportunidades de expresion del rango total de estrategias de historias de vida. Aunque el analisis del cambio climatico proporciono informacion util, los analisis detallados son prohibitivos en la escala de proyecto para la multitud de proyectos pequenos revisados anualmente. Los beneficios de nuestro estudio para los administradores de recursos incluyen un contexto geografico mas amplio para revisar proyectos pequenos similares en relacion con el cambio climatico, una aproximacion para analizarlos efectos acumulativos de acciones similares y la estimacion de los efectos a largo plazo de las acciones. Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low‐sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act‐mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999–2009) median river stages during peak subyearling occupancy (April–June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April–June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17–32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life‐history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions’ long‐term effects. Efectos Combinados del Cambio Climático y la Estabilización de Bordes de Ríos Hábitats de Aguas Poco Profundas del Salmón Chinook |
Author | JORGENSEN, JEFFREY C. MUNN, NANCY L. MCCLURE, MICHELLE M. SHEER, MINDI B. |
Author_xml | – sequence: 1 fullname: JORGENSEN, JEFFREY C – sequence: 2 fullname: MCCLURE, MICHELLE M – sequence: 3 fullname: SHEER, MINDI B – sequence: 4 fullname: MUNN, NANCY L |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24299086$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFrFDEYhoNU7LZ68a4OeCnC1CSTTJKjHeu2ULeHtSx4CZmZL91sZ5M6maWtv96ssy3iQQyBBN7neyB5D9CeDx4Qek3wMUnrYxNqd0woKeUzNCGcFjkRhdpDEyylzKVUdB8dxLjCGCtO2Au0TxlVCstygqAK69p5aLNTa6EZYhZsVnVubQbIqqXx15AZ32Ynxt9k88HUrnM_zeCCz9KeL03Xhbtskeg-O0vpYHaKpfMhpBHTrYN_iZ5b00V4tTsP0dWX02_VWX5xOT2vPl3kDRNM5pwUprVCEQmSCFtbJWSLpdheioYVTDYcTAsgAEhdN5K1tjYKFDDDmWXFIToavbd9-LGBOOi1iw10nfEQNlETpmjJFC_L_0BLTgRXgib0_V_oKmx6nx6ypahknMoiUR9GqulDjD1Yfdunb-wfNMF625Pe9qR_95Tgtzvlpl5D-4Q-FpMAMgJ3roOHf6h0dXly_ih9M86s4hD6P5xMYspxyvMxd3GA-6fc9De6FIXgejGb6nL2efb1-0LpaeLfjbw1QZvr3kV9NaeYlBiTItWiil91xMA3 |
CitedBy_id | crossref_primary_10_3389_fmars_2023_1278810 crossref_primary_10_1111_cobi_12166 crossref_primary_10_1111_cobi_12167 crossref_primary_10_1139_cjfas_2015_0314 |
Cites_doi | 10.1111/j.1365-2656.2006.01130.x 10.1111/j.1752-4571.2008.00025.x 10.1073/pnas.1037274100 10.1111/cobi.12167 10.1139/f95-262 10.1577/1548-8659(1987)116<196:LCIFAA>2.0.CO;2 10.1073/pnas.101093598 10.1007/s10584-010-9845-2 10.1002/hyp.7201 10.1007/s10584-010-9848-z 10.1029/2011EO310001 10.1098/rsbl.2009.0780 10.1577/1548-8675(2002)022<0713:QFDCIS>2.0.CO;2 10.1577/1548-8446(2001)026<0006:EORBRO>2.0.CO;2 10.1007/978-1-4612-1652-0 10.1577/1548-8675(2002)022<1283:COSFCS>2.0.CO;2 10.1007/s00267-002-2737-0 10.1139/f96-021 10.1577/1548-8675(1994)014<0362:IOWDOM>2.3.CO;2 10.1007/978-1-4612-1652-0_2 10.1080/02755947.2011.611424 10.1029/2003JC001829 10.1073/pnas.0609812104 10.3955/0029-344X-81.3.173 10.1577/T08-084.1 10.1111/cobi.12163 10.5751/ES-02626-140103 10.2307/1313099 |
ContentType | Journal Article |
Copyright | 2013 Society for Conservation Biology 2013 Society for Conservation Biology No claim to original US government works Conservation Biology © 2013 Society for Conservation Biology No claim to original US government works. 2013, Society for Conservation Biology |
Copyright_xml | – notice: 2013 Society for Conservation Biology – notice: 2013 Society for Conservation Biology No claim to original US government works – notice: Conservation Biology © 2013 Society for Conservation Biology No claim to original US government works. – notice: 2013, Society for Conservation Biology |
DBID | FBQ BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7TN |
DOI | 10.1111/cobi.12168 |
DatabaseName | AGRIS Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic Oceanic Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts MEDLINE - Academic Oceanic Abstracts |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1523-1739 |
EndPage | 1211 |
ExternalDocumentID | 3142586581 10_1111_cobi_12168 24299086 COBI12168 24480250 ark_67375_WNG_6NDNMZW9_G US201600130879 |
Genre | article Journal Article |
GeographicLocations | Oregon Willamette River USA, Oregon, Willamette R |
GeographicLocations_xml | – name: Oregon – name: Willamette River – name: USA, Oregon, Willamette R |
GroupedDBID | --- -DZ .-4 .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAUTI AAXRX AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABWRO ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACNCT ACPOU ACPRK ACPVT ACSCC ACSTJ ACXBN ACXME ACXQS ADACV ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFDN AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AHBTC AI. AIAGR AIRJO AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F D0L DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 DWIUU EBS ECGQY EJD EQZMY ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HVGLF HZI HZ~ IHE IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OES OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QN7 R.K ROL RSU RX1 SA0 SUPJJ TEORI TN5 UB1 UKR UQL V8K VH1 VOH W8V W99 WBKPD WHG WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH XSW YFH YUY YV5 YZZ ZCA ZCG ZO4 ZZTAW ~02 ~IA ~KM ~WT AAHBH ADUKH AHXOZ AILXY AITYG BSCLL HGLYW IPSME OIG SAMSI CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7TN |
ID | FETCH-LOGICAL-c4748-513adf7918e817fbf978d087bf973c4348c5eadee7ee1bbc84dfba9e9e4a54f43 |
IEDL.DBID | DR2 |
ISSN | 0888-8892 |
IngestDate | Fri Oct 25 00:44:29 EDT 2024 Sat Oct 26 01:15:37 EDT 2024 Thu Oct 10 16:40:16 EDT 2024 Fri Aug 23 01:58:10 EDT 2024 Tue Oct 15 23:45:11 EDT 2024 Sat Aug 24 00:58:46 EDT 2024 Thu Nov 14 15:15:01 EST 2024 Wed Oct 30 09:55:37 EDT 2024 Fri Apr 12 18:11:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | río Willamette Acta de Especies Amenazadas (ESA) escollera section 7 consultation riprap Willamette river mainstem riverbank stabilization tallo principal endangered species act salmón Chinook chinook salmon consultoría Sección 7 estabilización de orillas de ríos |
Language | English |
License | Conservation Biology © 2013 Society for Conservation Biology No claim to original US government works. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4748-513adf7918e817fbf978d087bf973c4348c5eadee7ee1bbc84dfba9e9e4a54f43 |
Notes | http://dx.doi.org/10.1111/cobi.12168 ark:/67375/WNG-6NDNMZW9-G istex:4FFB2834462A91AA141FCAD7B56CA9028B348151 ArticleID:COBI12168 jeff.jorgensen@noaa.gov ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24299086 |
PQID | 1462845283 |
PQPubID | 36794 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1492649566 proquest_miscellaneous_1465175972 proquest_journals_1462845283 crossref_primary_10_1111_cobi_12168 pubmed_primary_24299086 wiley_primary_10_1111_cobi_12168_COBI12168 jstor_primary_24480250 istex_primary_ark_67375_WNG_6NDNMZW9_G fao_agris_US201600130879 |
PublicationCentury | 2000 |
PublicationDate | December 2013 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: December 2013 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Conservation biology |
PublicationTitleAlternate | Conservation Biology |
PublicationYear | 2013 |
Publisher | Blackwell Scientific Publications Blackwell Publishing Ltd Wiley Periodicals Inc |
Publisher_xml | – name: Blackwell Scientific Publications – name: Blackwell Publishing Ltd – name: Wiley Periodicals Inc |
References | Naiman, R. J., and R. Bilby, editors. 1998. River ecology and management. Springer-Verlag, New York. Crozier, L. G., and R. W. Zabel. 2006. Climate impacts at multiple scales: evidence for differential population responses in juvenile Chinook salmon. Journal of Animal Ecology 75:1100-1109. Western, D. 2001. Human-modified ecosystems and future evolution. Proceedings of the National Academy of Sciences 98:5458-5465. Hamlet, A. F., et al. 2010. Final project report for the Columbia Basin Climate Change Scenarios Project. Climate Impacts Group, Seattle. Available from http://warm.atmos.washington.edu/2860/ (accessed April 2013). Mote, P. W., and E. P. Salaté. 2010. Future climate in the Pacific Northwest. Climate Change 102:29-50. Kukulka, T., and D. A. Jay. 2003. Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat. Journal of Geophysical Research-Oceans 108 (C9) DOI: 10.1029/2003JC001829. McClure, M. M., M. Alexander, D. Borggaard, D. Boughton, L. Crozier, R. Griffis, J. C. Jorgensen, S. Lindley, J. Nye, M. J. Rowland, C. Toole, K. and Van Houtan. 2013. Incorporating climate science in applications of the U.S. Endangered Species Act for aquatic species. Conservation Biology 27:1222-1233. Tabor, R. A., K. L. Fresh, R. M. Piaskowski, H. A. Gearns, and D. B. Hayes. 2011. Habitat use by juvenile Chinook salmon in the nearshore areas of Lake Washington: effects of depth, lakeshore development, substrate, and vegetation. North American Journal of Fisheries Management 31:700-713. Fischenich, J. D. 2003. Effects of riprap on riverine and riparian ecosystems. ERDC/EL TR-03-4, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi. Minns, C. K., J. R. M. Kelso, and R. G. Randall. 1996. Detecting the response of fish to habitat alterations in freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 53(supplement 1):403-414. Friesen, T. A., J. S. Vile, and A. L. Pribyl. 2007. Outmigration of juvenile Chinook salmon in the lower Willamette River, Oregon. Northwest Science 81:173-190. Hilborn, R., T. P. Quinn, D. E. Schindler, and D. E. Rogers. 2003. Biocomplexity and fisheries sustainability. Proceedings of the National Academy of Sciences 100:6564-6568. Ward, D. L., A. A. Nigro, R. A. Farr, and C. J. Knutsen. 1994. Influence of waterway development on migrational characteristics of juvenile salmonids in the Lower Willamette River, Oregon. North American Journal of Fisheries Management 14:362-371. Mantua, N., I. Tohver, and A. Hamlet. 2010. Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Climate Change 102:187-223. NMFS (National Marine Fisheries Service). 2008. Endangered Species Act Section 7(a)(2) consultation biological opinion and Magnuson-Stevens Fishery Conservation and Management Act essential fish habitat consultation: consultation on the "Willamette River Basin Flood Control Project." National Marine Fisheries Service, Portland, Oregon. Available from http://www.nwr.noaa.gov/Salmon-Hydropower/Willamette-Basin/Willamette-BO.cfm (accessed August 2011). Willamette/Lower Columbia Technical Recovery Team (WLCTRT). 2006. Revised viability criteria for salmon and steelhead in the Willamette and Lower Columbia Basins. WLCTRT, Seattle. Available from http://www.nwfsc.noaa.gov/trt/wlc_docs/Revised_WLC_Viability_Criteria_Draft_Apr_2006.pdf (accessed June 2012). Kammerer, J. C. 1990. Largest rivers in the United States. Open-file report 87-242. U.S. Geological Survey, Reston. Available from http://pubs.usgs.gov/of/1987/ofr87-242/pdf/ofr87242.pdf (accessed June 2012). Carlson, S. M., and T. R. Seamons. 2008. A review of quantitative genetic components of fitness in salmonids: implications for adaptation to future change. Evolutionary Applications 1:222-238. Hughes, R. M., and J. R. Gammon. 1987. Longitudinal changes in fish assemblages and water quality in the Willamette River, Oregon. Transactions of the American Fisheries Society 116:196-209. Lewis, C. A., N. P. Lester, A. D. Bradshaw, J. E. Fitzgibbon, K. Fuller, L. Hakanson, and C. Richards. 1996. Considerations of scale in habitat conservation and restoration. Canadian Journal of Fisheries and Aquatic Sciences 53(supplement 1):440-445. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestergaard, B. D. Richter, R. E. Sparks, and J. C. Stromberg. 1997. The natural flow regime. BioScience 47:769-784. Mote, P., L. Brekke, P. B. Duffy, and E. Maurer. 2011. Guidelines for constructing climate scenarios. EOS, Transactions, American Geophysical Union 92:257-258. Waples, R. S., T. Beechie, and G. R. Pess. 2009. Evolutionary history, habitat disturbance regimes, and anthropogenic changes: What do these mean for resilience of Pacific salmon populations? Ecology and Society 14:3. Available from http://www.ecologyandsociety.org/vol14/iss1/art3/ . Greene, C. M., J. E. Hall, K. R. Guilbault, and T. P. Quinn. 2009. Improved viability of populations with divergent life history portfolios. Biology Letters 6:382-386. Myers, J., C. Busack, D. Rawding, A. Marshall, D. Teel, D. M. Van Doornik, and M. T. Maher. 2006. Historical population structure of Pacific salmonids in the Willamette River and Lower Columbia River basins. Technical Memorandum NMFS-NWFSC-73, U.S. Dept. of Commerce, Seattle. Garland, R. D., K. F. Tiffan, D. W. Rondorf, and L. O. Clark. 2002. Comparison of subyearling fall Chinook salmon's use of riprap revetments and unaltered habitats in Lake Wallula of the Columbia River. North American Journal of Fisheries Management 22:1283-1289. Mattson, C. R. 1962. Early life history of Willamette River spring Chinook salmon. Oregon Fish Commission, Portland, Oregon. McElhany, P., M. H. Ruckelshaus, M. J. Ford, T. C. Wainwright, and E. P. Bjorkstedt. 2000. Viable salmon populations and the recovery of evolutionarily significant units. Technical Memorandum NMFS-NWFSC-42, U.S. Dept. of Commerce, Seattle. Tiffan, K. F., R. D. Garland, and D. W. Rondorf. 2002. Quantifying flow-dependent changes in subyearling fall Chinook salmon rearing habitat using two-dimensional spatially explicit modeling. North American Journal of Fisheries Management 22:713-726. Quinn, T. P. 2005. The behavior and ecology of Pacific salmon and trout. University of Washington Press, Seattle, WA. Bottom, D. L., C. A. Simenstad, J. Burke, A. M. Baptista, D. A. Jay, K. K. Jones, E. Casillas, and M. H. Schiewe. 2005. Salmon at river's end: the role of the estuary in the decline and recovery of Columbia River salmon. Technical memorandum NMFS-NWFSC-68. U.S. Dept. of Commerce, Seattle. Bunn, S. E., and A. H. Arthington. 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30:492-507. Dauble, D. D., T. L. Page, and R. W. Hanf Jr. 1989. Spatial distribution of juvenile salmonids in the Hanford Reach, Columbia River. Fishery Bulletin 87:775-790. Poff, N. L., J. D. Olden, D. M. Merritt, and D. M. Pepin. 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences 104:5732-5737. Snover, A. K., N. J. Mantua, J. S. Littell, M. A. Alexander, and M. M. McClure. 2013. Choosing and using climate change scenarios for ecological impacts assessments. Conservation Biology 27:1147-1157. Seney, E. E., M. M. McClure, M. J. Rowland, R. A. Lowery, and R. B. Griffis. 2013. Climate change, marine, environments, and the U.S. Endangered Species Act. Conservation Biology 27:1138-1146. NMFS (National Marine Fisheries Service). 2005. Endangered and threatened species: final listing determinations for 16 ESUs of West Coast salmon, and final 4(d) protective regulations for threatened salmonid ESUs. Federal Register 70:37160-37204. Schmetterling, D. A., C. G. Clancy, and T. M. Brandt. 2001. Effects of riprap reinforcement on stream salmonids in the western United States. Fisheries 26:6-13. USACE (U.S. Army Corps of Engineers). 2004. Portland-Vancouver harbor information package. 2nd edition. Reservoir regulation and water quality section. USACE, Portland, Oregon. Adams, J. C., A. F. Hamlet, and D. P. Lettenmaier. 2009. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrological Processes 23:962-972. ODFW (Oregon Department of Fish and Wildlife) and NMFS (National Marine Fisheries Service). 2011. Upper Willamette River conservation and recovery plan for Chinook salmon and steelhead. National Marine Fisheries Service, Portland, Oregon. Available from http://www.nwr.noaa.gov/Salmon-Recovery-Planning/Recovery-Domains/Willamette-Lower-Columbia/Will/upload/Will-final-plan.pdf (accessed January 2013). Teel, D. J., C. Baker, D. R. Kuligowski, T. A. Friesen, and B. Shields. 2009. Genetic stock composition of subyearling Chinook salmon in seasonal floodplain wetlands of the lower Willamette River, Oregon. Transactions of the American Fisheries Society 138:211-217. 2009; 23 2007; 104 2006; 75 1989; 87 2013; 27 2002; 30 2011 2010 1997; 47 2010; 102 1998 2011; 31 2008 2006 2005 2001; 26 2004 2003 2002 2008; 1 1996; 53 2009; 138 2009; 14 2003; 108 1987; 116 1990 2000 2011; 92 2002; 22 1994; 14 2007; 81 1962 2009; 6 2005; 70 2003; 100 2001; 98 e_1_2_7_5_1 e_1_2_7_4_1 Hamlet A. F. (e_1_2_7_14_1) 2010 Bottom D. L. (e_1_2_7_3_1) 2005 McClure M. M. (e_1_2_7_22_1) 2013 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 NMFS (National Marine Fisheries Service) (e_1_2_7_30_1) 2005; 70 e_1_2_7_26_1 Chang H. (e_1_2_7_6_1) 2010 e_1_2_7_27_1 Dauble D. D. (e_1_2_7_8_1) 1989; 87 Gregory S. (e_1_2_7_13_1) 2002 e_1_2_7_29_1 Adams J. C. (e_1_2_7_2_1) 2009; 23 Fischenich J. D. (e_1_2_7_9_1) 2003 Mattson C. R. (e_1_2_7_21_1) 1962 Kammerer J. C. (e_1_2_7_17_1) 1990 Myers J. (e_1_2_7_28_1) 2006 Willamette/Lower Columbia Technical Recovery Team (WLCTRT) (e_1_2_7_46_1) 2006 NMFS (National Marine Fisheries Service) (e_1_2_7_31_1) 2008 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_33_1 e_1_2_7_34_1 e_1_2_7_20_1 ODFW (Oregon Department of Fish and Wildlife) and NMFS (National Marine Fisheries Service) (e_1_2_7_32_1) 2011 e_1_2_7_36_1 e_1_2_7_37_1 USACE (U.S. Army Corps of Engineers) (e_1_2_7_42_1) 2004 e_1_2_7_38_1 e_1_2_7_39_1 McElhany P. (e_1_2_7_23_1) 2000 Quinn T. P. (e_1_2_7_35_1) 2005 |
References_xml | – year: 2011 – volume: 31 start-page: 700 year: 2011 end-page: 713 article-title: Habitat use by juvenile Chinook salmon in the nearshore areas of Lake Washington: effects of depth, lakeshore development, substrate, and vegetation publication-title: North American Journal of Fisheries Management – volume: 92 start-page: 257 year: 2011 end-page: 258 article-title: Guidelines for constructing climate scenarios publication-title: EOS, Transactions, American Geophysical Union – volume: 138 start-page: 211 year: 2009 end-page: 217 article-title: Genetic stock composition of subyearling Chinook salmon in seasonal floodplain wetlands of the lower Willamette River, Oregon publication-title: Transactions of the American Fisheries Society – year: 1962 – volume: 116 start-page: 196 year: 1987 end-page: 209 article-title: Longitudinal changes in fish assemblages and water quality in the Willamette River, Oregon publication-title: Transactions of the American Fisheries Society – year: 2005 – volume: 1 start-page: 222 year: 2008 end-page: 238 article-title: A review of quantitative genetic components of fitness in salmonids: implications for adaptation to future change publication-title: Evolutionary Applications – volume: 102 start-page: 29 year: 2010 end-page: 50 article-title: Future climate in the Pacific Northwest publication-title: Climate Change – volume: 27 start-page: 1222 year: 2013 end-page: 1233 – volume: 47 start-page: 769 year: 1997 end-page: 784 article-title: The natural flow regime publication-title: BioScience – year: 2003 – start-page: 92 year: 2002 end-page: 93 – year: 2000 – volume: 27 start-page: 1138 year: 2013 end-page: 1146 article-title: Climate change, marine, environments, and the U.S. Endangered Species Act publication-title: Conservation Biology – volume: 70 start-page: 37160 year: 2005 end-page: 37204 article-title: Endangered and threatened species: final listing determinations for 16 ESUs of West Coast salmon, and final 4(d) protective regulations for threatened salmonid ESUs publication-title: Federal Register – year: 2010 – year: 1998 – volume: 26 start-page: 6 year: 2001 end-page: 13 article-title: Effects of riprap reinforcement on stream salmonids in the western United States publication-title: Fisheries – volume: 22 start-page: 1283 year: 2002 end-page: 1289 article-title: Comparison of subyearling fall Chinook salmon's use of riprap revetments and unaltered habitats in Lake Wallula of the Columbia River publication-title: North American Journal of Fisheries Management – volume: 100 start-page: 6564 year: 2003 end-page: 6568 article-title: Biocomplexity and fisheries sustainability publication-title: Proceedings of the National Academy of Sciences – volume: 22 start-page: 713 year: 2002 end-page: 726 article-title: Quantifying flow‐dependent changes in subyearling fall Chinook salmon rearing habitat using two‐dimensional spatially explicit modeling publication-title: North American Journal of Fisheries Management – start-page: 69 year: 2010 end-page: 150 – volume: 75 start-page: 1100 year: 2006 end-page: 1109 article-title: Climate impacts at multiple scales: evidence for differential population responses in juvenile Chinook salmon publication-title: Journal of Animal Ecology – volume: 104 start-page: 5732 year: 2007 end-page: 5737 article-title: Homogenization of regional river dynamics by dams and global biodiversity implications publication-title: Proceedings of the National Academy of Sciences – volume: 14 start-page: 362 year: 1994 end-page: 371 article-title: Influence of waterway development on migrational characteristics of juvenile salmonids in the Lower Willamette River, Oregon publication-title: North American Journal of Fisheries Management – volume: 6 start-page: 382 year: 2009 end-page: 386 article-title: Improved viability of populations with divergent life history portfolios publication-title: Biology Letters – volume: 53 start-page: 440 issue: supplement 1 year: 1996 end-page: 445 article-title: Considerations of scale in habitat conservation and restoration publication-title: Canadian Journal of Fisheries and Aquatic Sciences – year: 2008 – year: 2006 – year: 2004 – volume: 81 start-page: 173 year: 2007 end-page: 190 article-title: Outmigration of juvenile Chinook salmon in the lower Willamette River, Oregon publication-title: Northwest Science – start-page: 87 year: 1990 end-page: 242 – volume: 53 start-page: 403 issue: supplement 1 year: 1996 end-page: 414 article-title: Detecting the response of fish to habitat alterations in freshwater ecosystems publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 23 start-page: 962 year: 2009 end-page: 972 article-title: Implications of global climate change for snowmelt hydrology in the twenty‐first century publication-title: Hydrological Processes – volume: 98 start-page: 5458 year: 2001 end-page: 5465 article-title: Human‐modified ecosystems and future evolution publication-title: Proceedings of the National Academy of Sciences – volume: 102 start-page: 187 year: 2010 end-page: 223 article-title: Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State publication-title: Climate Change – volume: 108 issue: C9 year: 2003 article-title: Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow‐water habitat publication-title: Journal of Geophysical Research‐Oceans – start-page: 13 year: 1998 end-page: 42 – volume: 87 start-page: 775 year: 1989 end-page: 790 article-title: Spatial distribution of juvenile salmonids in the Hanford Reach, Columbia River publication-title: Fishery Bulletin – volume: 27 start-page: 1147 year: 2013 end-page: 1157 article-title: Choosing and using climate change scenarios for ecological impacts assessments publication-title: Conservation Biology – volume: 30 start-page: 492 year: 2002 end-page: 507 article-title: Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity publication-title: Environmental Management – volume: 14 start-page: 3 year: 2009 article-title: Evolutionary history, habitat disturbance regimes, and anthropogenic changes: What do these mean for resilience of Pacific salmon populations? publication-title: Ecology and Society – ident: e_1_2_7_7_1 doi: 10.1111/j.1365-2656.2006.01130.x – start-page: 87 volume-title: Largest rivers in the United States year: 1990 ident: e_1_2_7_17_1 contributor: fullname: Kammerer J. C. – start-page: 69 volume-title: Oregon climate assessment report year: 2010 ident: e_1_2_7_6_1 contributor: fullname: Chang H. – volume-title: Revised viability criteria for salmon and steelhead in the Willamette and Lower Columbia Basins year: 2006 ident: e_1_2_7_46_1 contributor: fullname: Willamette/Lower Columbia Technical Recovery Team (WLCTRT) – ident: e_1_2_7_5_1 doi: 10.1111/j.1752-4571.2008.00025.x – ident: e_1_2_7_15_1 doi: 10.1073/pnas.1037274100 – ident: e_1_2_7_37_1 doi: 10.1111/cobi.12167 – start-page: 1222 volume-title: Incorporating climate science in applications of the U.S. Endangered Species Act for aquatic species year: 2013 ident: e_1_2_7_22_1 contributor: fullname: McClure M. M. – volume-title: Historical population structure of Pacific salmonids in the Willamette River and Lower Columbia River basins year: 2006 ident: e_1_2_7_28_1 contributor: fullname: Myers J. – ident: e_1_2_7_24_1 doi: 10.1139/f95-262 – ident: e_1_2_7_16_1 doi: 10.1577/1548-8659(1987)116<196:LCIFAA>2.0.CO;2 – volume: 87 start-page: 775 year: 1989 ident: e_1_2_7_8_1 article-title: Spatial distribution of juvenile salmonids in the Hanford Reach, Columbia River publication-title: Fishery Bulletin contributor: fullname: Dauble D. D. – volume-title: The behavior and ecology of Pacific salmon and trout year: 2005 ident: e_1_2_7_35_1 contributor: fullname: Quinn T. P. – ident: e_1_2_7_45_1 doi: 10.1073/pnas.101093598 – start-page: 92 volume-title: Willamette River basin: trajectories of environmental and ecological change year: 2002 ident: e_1_2_7_13_1 contributor: fullname: Gregory S. – ident: e_1_2_7_20_1 doi: 10.1007/s10584-010-9845-2 – volume: 23 start-page: 962 year: 2009 ident: e_1_2_7_2_1 article-title: Implications of global climate change for snowmelt hydrology in the twenty‐first century publication-title: Hydrological Processes doi: 10.1002/hyp.7201 contributor: fullname: Adams J. C. – ident: e_1_2_7_26_1 doi: 10.1007/s10584-010-9848-z – ident: e_1_2_7_27_1 doi: 10.1029/2011EO310001 – volume-title: Salmon at river's end: the role of the estuary in the decline and recovery of Columbia River salmon. Technical memorandum NMFS‐NWFSC‐68 year: 2005 ident: e_1_2_7_3_1 contributor: fullname: Bottom D. L. – ident: e_1_2_7_12_1 doi: 10.1098/rsbl.2009.0780 – volume-title: Upper Willamette River conservation and recovery plan for Chinook salmon and steelhead. National Marine Fisheries Service, Portland, Oregon year: 2011 ident: e_1_2_7_32_1 contributor: fullname: ODFW (Oregon Department of Fish and Wildlife) and NMFS (National Marine Fisheries Service) – ident: e_1_2_7_41_1 doi: 10.1577/1548-8675(2002)022<0713:QFDCIS>2.0.CO;2 – ident: e_1_2_7_36_1 doi: 10.1577/1548-8446(2001)026<0006:EORBRO>2.0.CO;2 – ident: e_1_2_7_29_1 doi: 10.1007/978-1-4612-1652-0 – ident: e_1_2_7_11_1 doi: 10.1577/1548-8675(2002)022<1283:COSFCS>2.0.CO;2 – ident: e_1_2_7_4_1 doi: 10.1007/s00267-002-2737-0 – ident: e_1_2_7_19_1 doi: 10.1139/f96-021 – ident: e_1_2_7_44_1 doi: 10.1577/1548-8675(1994)014<0362:IOWDOM>2.3.CO;2 – volume-title: Portland‐Vancouver harbor information package. 2nd edition. Reservoir regulation and water quality section year: 2004 ident: e_1_2_7_42_1 contributor: fullname: USACE (U.S. Army Corps of Engineers) – volume-title: Viable salmon populations and the recovery of evolutionarily significant units. Technical Memorandum NMFS‐NWFSC‐42 year: 2000 ident: e_1_2_7_23_1 contributor: fullname: McElhany P. – ident: e_1_2_7_25_1 doi: 10.1007/978-1-4612-1652-0_2 – ident: e_1_2_7_39_1 doi: 10.1080/02755947.2011.611424 – volume: 70 start-page: 37160 year: 2005 ident: e_1_2_7_30_1 article-title: Endangered and threatened species: final listing determinations for 16 ESUs of West Coast salmon, and final 4(d) protective regulations for threatened salmonid ESUs publication-title: Federal Register contributor: fullname: NMFS (National Marine Fisheries Service) – volume-title: Effects of riprap on riverine and riparian ecosystems year: 2003 ident: e_1_2_7_9_1 contributor: fullname: Fischenich J. D. – ident: e_1_2_7_18_1 doi: 10.1029/2003JC001829 – ident: e_1_2_7_34_1 doi: 10.1073/pnas.0609812104 – ident: e_1_2_7_10_1 doi: 10.3955/0029-344X-81.3.173 – volume-title: Early life history of Willamette River spring Chinook salmon year: 1962 ident: e_1_2_7_21_1 contributor: fullname: Mattson C. R. – ident: e_1_2_7_40_1 doi: 10.1577/T08-084.1 – volume-title: Final project report for the Columbia Basin Climate Change Scenarios Project year: 2010 ident: e_1_2_7_14_1 contributor: fullname: Hamlet A. F. – volume-title: Endangered Species Act Section 7(a)(2) consultation biological opinion and Magnuson‐Stevens Fishery Conservation and Management Act essential fish habitat consultation: consultation on the “Willamette River Basin Flood Control Project year: 2008 ident: e_1_2_7_31_1 contributor: fullname: NMFS (National Marine Fisheries Service) – ident: e_1_2_7_38_1 doi: 10.1111/cobi.12163 – ident: e_1_2_7_43_1 doi: 10.5751/ES-02626-140103 – ident: e_1_2_7_33_1 doi: 10.2307/1313099 |
SSID | ssj0009514 |
Score | 2.1712577 |
Snippet | Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity.... Abstract Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human... |
SourceID | proquest crossref pubmed wiley jstor istex fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1201 |
SubjectTerms | Acta de Especies Amenazadas (ESA) Animals beaches chinook salmon Climate Change consultoría Sección 7 Ecosystem Endangered & extinct species endangered species Endangered Species - legislation & jurisprudence endangered species act escollera estabilización de orillas de ríos Freshwater Habitats humans life history long term effects mainstem managers Marine conservation mouth Oncorhynchus tshawytscha Oregon Population Dynamics predators riprap riverbank stabilization Rivers rocks río Willamette Salmon Salmon - physiology salmón Chinook section 7 consultation Shoreline protection shorelines Special Section: Incorporating Climate Change into Risk Analyses under the U.S. Endangered Species Act tallo principal Willamette river |
Title | Combined Effects of Climate Change and Bank Stabilization on Shallow Water Habitats of Chinook Salmon |
URI | https://api.istex.fr/ark:/67375/WNG-6NDNMZW9-G/fulltext.pdf https://www.jstor.org/stable/24480250 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.12168 https://www.ncbi.nlm.nih.gov/pubmed/24299086 https://www.proquest.com/docview/1462845283 https://search.proquest.com/docview/1465175972 https://search.proquest.com/docview/1492649566 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_ngeCL3-f1PCWi-CD0uLTpJgFfvL2PVbgVXJc9BAlJk57LHu2xH-j51zuTbNc9kQOFPqRk0jbJTPObdvIbQl4Zxnyn8PupNaxIuRE8NQ5OmYPVQWXOq_BN97Tf6Q35h7PibIO8bffCRH6I1Qc3tIzwvkYDN3a2ZuRlY8fIjdDBnb4sFxjPdfgpW2PcjcTe4OKlEm675CbFMJ7fTa-tRrcq0wBGxeH90YYn_g14XsexYSE6vke-tl2I8SeTvcXc7pU__2B3_N8-3id3lwiVvosq9YBs-PohuR1zVl5B6SjwXF89IpgRAvxq72ikQJ7RpqLdizFgYE_jrgVqakcPTD2hAGoxDDdu-qRwDDCLS_OdjkB6SntQC7A3XuLbuAboTwfmAmzkMRkeH33u9tJl1oa05ILLtGC5cZVQTHrJRGUr8FPdvhRYyEuec1kWGKXthffM2lJyV1mjvPLcFLzi-RbZrJvabxPqpClzZqwwEhwZzAlifOU4KJfyoFs8IS_b2dOXkZxDt04NDp0OQ5eQbZhYbc7hramHgww59fB_rRQqIa_DbK9am-kEI91EoUf9E93pH_ZPv4yUPknIVlCHlSCgIonwMSG7rX7opfXP0J2CVR9pcxLyYlUNdos_Y0ztm0WQKQC6KZHdJKMAr4IH20nIk6h7aw-AQEJCzZugQTcMgO5-PHgfSjv_IvyU3Mkw90eI3dklm_Ppwj8DBDa3z4Ol_QK6aSeN |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoEYJLeZYGChiBOCClahInto90-9hCN0hsV1v1YjmxA6utkmofgvLrmbGzyxahSiDl4MiTlz1jf-OMvyHkrY4im6V2Nyx0lIZMcxZqA6eRgdlBxsZKt6bby7PugH08S8_a2BzcC-P5IZYLbmgZbrxGA8cF6RUrL5tihOQImVgjt8HeE8zcsP8lXuHc9dTe4OSFAh7cspNiIM_va6_NR2uVbgClYgP_WAQo_g16Xkeybio6vO_zrU4dgyFGoIx35rNip_z5B7_jf3_lA7LRglT6wWvVQ3LL1o_IHZ-28gpKB47q-uoxwaQQ4FpbQz0L8pQ2Fe1cjAAGW-o3LlBdG7qn6zEFXIuRuH7fJ4Wjj4lcmu90CNIT2oVaQL7-Ft9GNaB_2tcXYCZPyODw4LTTDdvEDWHJOBNhGiXaVFxGwoqIV0UFrqrZFRwLSckSJsoUA7UttzYqilIwUxVaWmmZTlnFkk2yXje13SLUCF0mkS64FuDLYFoQbSvDQL-kBfViAXmz6D516fk51MKvwaZTrukCsgU9q_RXGDjVoB8jrR7-shVcBuSd6-7l1XoyxmA3nqphfqSyfD_vnQ-lOgrIptOHpSAAI4EIMiDbCwVR7QAwRY8KJn5kzgnI62U1mC7-j9G1beZOJgX0Jnl8k4wEyApObBaQp175Vl4AsYSAmvdOhW5oANX5vHfsSs_-RfgVuds97Z2ok-P803NyL8ZUIC6UZ5uszyZz-wIA2ax46czuFxhNK6U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5tQyBe-D0WGGAE4gEp05I4iSPxwrp1HbCAKFUnJGQ5sbNVnZKpawXjr-fObkqH0CSQ8uDI5yS27-LvkvN3AC9VEJgkNtt-oYLY5yrlvtJ4GmhcHbJQm8x-0z3Mk96AvzuKj1bgTbsXxvFDLD64kWXY9zUZ-Jmuloy8bIoRcSMkYhWu8QShL0Giz-ES5a5j9kYfzxd43zk5KcXx_G57aTlarVSDIJXG90cbn_g35HkZyNqVqHsbvrV9cAEo463ZtNgqf_5B7_i_nbwDt-YQlb11OnUXVkx9D667pJUXWNqzRNcX94FSQqBjbTRzHMjnrKlY53SEINgwt22BqVqzHVWPGaJaisN1uz4ZHn1K49J8Z0OUnrAe1iLudZc4GdWI_VlfnaKRPIBBd-9Lp-fP0zb4JU-58OMgUrpKs0AYEaRVUaGjqrdFSoWo5BEXZUxh2iY1JiiKUnBdFSozmeEq5hWP1mGtbmqzAUwLVUaBKlIl0JOhpCDKVJqjdmUGlYt78KKdPXnm2Dlk69XQ0Ek7dB5s4MRKdYyvTTnoh0SqRz9sRZp58MrO9qK1mowp1C2N5TDfl0m-mx9-HWZy34N1qw4LQYRFgvCjB5utfsi5-Z-TP4XLPvHmePB8UY2GS39jVG2amZWJEbtlaXiVTIaAFV3YxIOHTveWHoCQhMCa11aDrhgA2fm4c2BLj_5F-Bnc-LTblR8O8veP4WZIeUBsHM8mrE0nM_ME0di0eGqN7hdstCpU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Effects+of+Climate+Change+and+Bank+Stabilization+on+Shallow+Water+Habitats+of+Chinook+Salmon&rft.jtitle=Conservation+biology&rft.au=Jorgensen%2C+Jeffrey+C&rft.au=McClure%2C+Michelle+M&rft.au=Sheer%2C+Mindi+B&rft.au=Munn%2C+Nancy+L&rft.date=2013-12-01&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=27&rft.issue=6&rft.spage=1201&rft.epage=1211&rft_id=info:doi/10.1111%2Fcobi.12168&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |