Combined Effects of Climate Change and Bank Stabilization on Shallow Water Habitats of Chinook Salmon

Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low‐sloped beaches to these combined effects in the lower Willamette River, Oregon, an...

Full description

Saved in:
Bibliographic Details
Published inConservation biology Vol. 27; no. 6; pp. 1201 - 1211
Main Authors JORGENSEN, JEFFREY C, MCCLURE, MICHELLE M, SHEER, MINDI B, MUNN, NANCY L
Format Journal Article
LanguageEnglish
Published United States Blackwell Scientific Publications 01.12.2013
Blackwell Publishing Ltd
Wiley Periodicals Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low‐sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act‐mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999–2009) median river stages during peak subyearling occupancy (April–June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April–June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17–32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life‐history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions’ long‐term effects. Efectos Combinados del Cambio Climático y la Estabilización de Bordes de Ríos Hábitats de Aguas Poco Profundas del Salmón Chinook
AbstractList Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low‐sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act‐mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999–2009) median river stages during peak subyearling occupancy (April–June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April–June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17–32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life‐history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions’ long‐term effects. Efectos Combinados del Cambio Climático y la Estabilización de Bordes de Ríos Hábitats de Aguas Poco Profundas del Salmón Chinook Resumen Todavía permanecen obstáculos significativos en la habilidad para estimar el cambio de hábitat bajo los efectos combinados de la variabilidad natural, el cambio climático y la actividad humana. Examinamos los efectos anticipados en el agua poco profunda sobre playones con poca inclinación a estos efectos combinados en la parte baja del río Willamette, Oregon, un área altamente alterada por el desarrollo. Una propuesta para estabilizar algunos bordes con rocas grandes (escolleras) alteraría las áreas de poca profundidad, un hábitat importante para el salmón Chinook (Oncorhynchus tshawytscha), una especie amenazada, y estaría sujeta a revisiones mandadas por el Acta Estadunidense de Especies Amenazadas. En el cauce principal, salmones menores al año parecer ocupar preferencialmente áreas que fluctúan con etapas de río. Estimamos los efectos con un modelo geoespacial y proyecciones futuras de caudales de río. La media de las etapas de río recientes (1999–2009) durante ocupaciones críticas de salmones menores al año (abril‐junio) maximizó el área de playones con poca profundidad en la parte baja del cauce principal. El área de poca profundidad río arriba se maximizó más en etapas más bajas del río de lo que ha ocurrido recientemente. Etapas más altas del río en abril‐junio, resultantes de incrementos de flujo predichos para los 2080s, disminuyeron el área de playones de poca profundidad de 17–32%. Con base en los flujos proyectados para 2080, más del 15% del área de playones de poca profundidad fue desplazada por la escollera. El área de playones de poca profundidad perdida por la escollera representó hasta el 1.6% del total de la boca del río hasta 12.9 Km río arriba. Las reducciones en el área de playones de poca profundidad pueden restringir la alimentación de los salmones, sus descansos y refugios contra depredadores y reducir potencialmente las oportunidades de expresión del rango total de estrategias de historias de vida. Aunque el análisis del cambio climático proporcionó información útil, los análisis detallados son prohibitivos en la escala de proyecto para la multitud de proyectos pequeños revisados anualmente. Los beneficios de nuestro estudio para los administradores de recursos incluyen un contexto geográfico más amplio para revisar proyectos pequeños similares en relación con el cambio climático, una aproximación para analizarlos efectos acumulativos de acciones similares y la estimación de los efectos a largo plazo de las acciones.
Abstract Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low‐sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act‐mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999–2009) median river stages during peak subyearling occupancy (April–June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April–June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17–32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life‐history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions’ long‐term effects . Efectos Combinados del Cambio Climático y la Estabilización de Bordes de Ríos Hábitats de Aguas Poco Profundas del Salmón Chinook Resumen Todavía permanecen obstáculos significativos en la habilidad para estimar el cambio de hábitat bajo los efectos combinados de la variabilidad natural, el cambio climático y la actividad humana. Examinamos los efectos anticipados en el agua poco profunda sobre playones con poca inclinación a estos efectos combinados en la parte baja del río Willamette, Oregon, un área altamente alterada por el desarrollo. Una propuesta para estabilizar algunos bordes con rocas grandes (escolleras) alteraría las áreas de poca profundidad, un hábitat importante para el salmón Chinook (Oncorhynchus tshawytscha), una especie amenazada, y estaría sujeta a revisiones mandadas por el Acta Estadunidense de Especies Amenazadas. En el cauce principal, salmones menores al año parecer ocupar preferencialmente áreas que fluctúan con etapas de río. Estimamos los efectos con un modelo geoespacial y proyecciones futuras de caudales de río. La media de las etapas de río recientes (1999–2009) durante ocupaciones críticas de salmones menores al año (abril‐junio) maximizó el área de playones con poca profundidad en la parte baja del cauce principal. El área de poca profundidad río arriba se maximizó más en etapas más bajas del río de lo que ha ocurrido recientemente. Etapas más altas del río en abril‐junio, resultantes de incrementos de flujo predichos para los 2080s, disminuyeron el área de playones de poca profundidad de 17–32%. Con base en los flujos proyectados para 2080, más del 15% del área de playones de poca profundidad fue desplazada por la escollera. El área de playones de poca profundidad perdida por la escollera representó hasta el 1.6% del total de la boca del río hasta 12.9 Km río arriba. Las reducciones en el área de playones de poca profundidad pueden restringir la alimentación de los salmones, sus descansos y refugios contra depredadores y reducir potencialmente las oportunidades de expresión del rango total de estrategias de historias de vida. Aunque el análisis del cambio climático proporcionó información útil, los análisis detallados son prohibitivos en la escala de proyecto para la multitud de proyectos pequeños revisados anualmente. Los beneficios de nuestro estudio para los administradores de recursos incluyen un contexto geográfico más amplio para revisar proyectos pequeños similares en relación con el cambio climático, una aproximación para analizarlos efectos acumulativos de acciones similares y la estimación de los efectos a largo plazo de las acciones.
Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions' long-term effects. [PUBLICATION ABSTRACT]
Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions' long-term effects. Efectos Combinados del Cambio Climático y la Estabilización de Bordes de Ríos Hábitats de Aguas Poco Profundas del Salmón Chinook.
Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions' long-term effects. Todavía permanecen obstáculos significativos en la habilidad para estimar el cambio de hábitat bajo los efectos combinados de la variabilidad natural, el cambio climático y la actividad humana. Examinamos los efectos anticipados en el agua poco profunda sobre playones con poca inclinación a estos efectos combinados en la parte baja del río Willamette, Oregon, un área altamente alterada por el desarrollo. Una propuesta para estabilizar algunos bordes con rocas grandes (escolleras) alteraría las áreas de poca profundidad, un hábitat importante para el salmón Chinook (Oncorhynchus tshawytscha), una especie amenazada, y estaría sujeta a revisiones mandadas por el Acta Estadunidense de Especies Amenazadas. En el cauce principal, salmones menores al año parecer ocupar preferencialmente áreas que fluctúan con etapas de río. Estimamos los efectos con un modelo geoespacial y proyecciones futuras de caudales de río. La media de las etapas de río recientes (1999-2009) durante ocupaciones críticas de salmones menores al año (abril-junio) maximizó el área de playones con poca profundidad en la parte baja del cauce principal. El área de poca profundidad río arriba se maximizó más en etapas bajas del río de lo que ha ocurrido recientemente. Etapas más altas del río en abril-junio, resultantes de incrementos de flujo predichos para los 2080s, disminuyeron el área de playones de poca profundidad de 17-32%. Con base en los flujos proyectados para 2080, más del 15% del área de playones de poca profundidad fue desplazada por la escollera. El área de playones de poca profundidad perdida por la escollera representó hasta el 1.6% del total de la boca del río hasta 12.9 Km río arriba. Las reducciones en el área de playones de poca profundidad pueden restringir la alimentación de los salmones, sus descansos y refugios contra depredadores y reducir potencialmente las oportunidades de expresión del rango total de estrategias de historias de vida. Aunque el análisis del cambio climático proporcionó información útil, los análisis detallados son prohibitivos en la escala de proyecto para la multitud de proyectos pequeños revisados anualmente. Los beneficios de nuestro estudio para los administradores de recursos incluyen un contexto geográfico más amplio para revisar proyectos pequeños similares en relación con el cambio climático, una aproximación para analizarlos efectos acumulativos de acciones similares y la estimación de los efectos a largo plazo de las acciones.
Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions' long-term effects.Original Abstract: Efectos Combinados del Cambio Climatico y la Estabilizacion de Bordes de Rios Habitats de Aguas Poco Profundas del Salmon Chinook Todavia permanecen obstaculos significativos en la habilidad para estimar el cambio de habitat bajo los efectos combinados de la variabilidad natural, el cambio climatico y la actividad humana. Examinamos los efectos anticipados en el agua poco profunda sobre playones con poca inclinacion a estos efectos combinados en la parte baja del rio Willamette, Oregon, un area altamente alterada por el desarrollo. Una propuesta para estabilizar algunos bordes con rocas grandes (escolleras) alteraria las areas de poca profundidad, un habitat importante para el salmon Chinook (Oncorhynchus tshawytscha), una especie amenazada, y estaria sujeta a revisiones mandadas por el Acta Estadunidense de Especies Amenazadas. En el cauce principal, salmones menores al ano parecer ocupar preferencialmente areas que fluctuan con etapas de rio. Estimamos los efectos con un modelo geoespacial y proyecciones futuras de caudales de rio. La media de las etapas de rio recientes (1999-2009) durante ocupaciones criticas de salmones menores al ano (abril-junio) maximizo el area de playones con poca profundidad en la parte baja del cauce principal. El area de poca profundidad rio arriba se maximizo mas en etapas mas bajas del rio de lo que ha ocurrido recientemente. Etapas mas altas del rio en abril-junio, resultantes de incrementos de flujo predichos para los 2080s, disminuyeron el area de playones de poca profundidad de 17-32%. Con base en los flujos proyectados para 2080, mas del 15% del area de playones de poca profundidad fue desplazada por la escollera. El area de playones de poca profundidad perdida por la escollera represento hasta el 1.6% del total de la boca del rio hasta 12.9 Km rio arriba. Las reducciones en el area de playones de poca profundidad pueden restringir la alimentacion de los salmones, sus descansos y refugios contra depredadores y reducir potencialmente las oportunidades de expresion del rango total de estrategias de historias de vida. Aunque el analisis del cambio climatico proporciono informacion util, los analisis detallados son prohibitivos en la escala de proyecto para la multitud de proyectos pequenos revisados anualmente. Los beneficios de nuestro estudio para los administradores de recursos incluyen un contexto geografico mas amplio para revisar proyectos pequenos similares en relacion con el cambio climatico, una aproximacion para analizarlos efectos acumulativos de acciones similares y la estimacion de los efectos a largo plazo de las acciones.
Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low‐sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act‐mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999–2009) median river stages during peak subyearling occupancy (April–June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April–June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17–32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life‐history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions’ long‐term effects. Efectos Combinados del Cambio Climático y la Estabilización de Bordes de Ríos Hábitats de Aguas Poco Profundas del Salmón Chinook
Author JORGENSEN, JEFFREY C.
MUNN, NANCY L.
MCCLURE, MICHELLE M.
SHEER, MINDI B.
Author_xml – sequence: 1
  fullname: JORGENSEN, JEFFREY C
– sequence: 2
  fullname: MCCLURE, MICHELLE M
– sequence: 3
  fullname: SHEER, MINDI B
– sequence: 4
  fullname: MUNN, NANCY L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24299086$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFrFDEYhoNU7LZ68a4OeCnC1CSTTJKjHeu2ULeHtSx4CZmZL91sZ5M6maWtv96ssy3iQQyBBN7neyB5D9CeDx4Qek3wMUnrYxNqd0woKeUzNCGcFjkRhdpDEyylzKVUdB8dxLjCGCtO2Au0TxlVCstygqAK69p5aLNTa6EZYhZsVnVubQbIqqXx15AZ32Ynxt9k88HUrnM_zeCCz9KeL03Xhbtskeg-O0vpYHaKpfMhpBHTrYN_iZ5b00V4tTsP0dWX02_VWX5xOT2vPl3kDRNM5pwUprVCEQmSCFtbJWSLpdheioYVTDYcTAsgAEhdN5K1tjYKFDDDmWXFIToavbd9-LGBOOi1iw10nfEQNlETpmjJFC_L_0BLTgRXgib0_V_oKmx6nx6ypahknMoiUR9GqulDjD1Yfdunb-wfNMF625Pe9qR_95Tgtzvlpl5D-4Q-FpMAMgJ3roOHf6h0dXly_ih9M86s4hD6P5xMYspxyvMxd3GA-6fc9De6FIXgejGb6nL2efb1-0LpaeLfjbw1QZvr3kV9NaeYlBiTItWiil91xMA3
CitedBy_id crossref_primary_10_3389_fmars_2023_1278810
crossref_primary_10_1111_cobi_12166
crossref_primary_10_1111_cobi_12167
crossref_primary_10_1139_cjfas_2015_0314
Cites_doi 10.1111/j.1365-2656.2006.01130.x
10.1111/j.1752-4571.2008.00025.x
10.1073/pnas.1037274100
10.1111/cobi.12167
10.1139/f95-262
10.1577/1548-8659(1987)116<196:LCIFAA>2.0.CO;2
10.1073/pnas.101093598
10.1007/s10584-010-9845-2
10.1002/hyp.7201
10.1007/s10584-010-9848-z
10.1029/2011EO310001
10.1098/rsbl.2009.0780
10.1577/1548-8675(2002)022<0713:QFDCIS>2.0.CO;2
10.1577/1548-8446(2001)026<0006:EORBRO>2.0.CO;2
10.1007/978-1-4612-1652-0
10.1577/1548-8675(2002)022<1283:COSFCS>2.0.CO;2
10.1007/s00267-002-2737-0
10.1139/f96-021
10.1577/1548-8675(1994)014<0362:IOWDOM>2.3.CO;2
10.1007/978-1-4612-1652-0_2
10.1080/02755947.2011.611424
10.1029/2003JC001829
10.1073/pnas.0609812104
10.3955/0029-344X-81.3.173
10.1577/T08-084.1
10.1111/cobi.12163
10.5751/ES-02626-140103
10.2307/1313099
ContentType Journal Article
Copyright 2013 Society for Conservation Biology
2013 Society for Conservation Biology No claim to original US government works
Conservation Biology © 2013 Society for Conservation Biology No claim to original US government works.
2013, Society for Conservation Biology
Copyright_xml – notice: 2013 Society for Conservation Biology
– notice: 2013 Society for Conservation Biology No claim to original US government works
– notice: Conservation Biology © 2013 Society for Conservation Biology No claim to original US government works.
– notice: 2013, Society for Conservation Biology
DBID FBQ
BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
7TN
DOI 10.1111/cobi.12168
DatabaseName AGRIS
Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Oceanic Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
MEDLINE - Academic
Oceanic Abstracts
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE

Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1523-1739
EndPage 1211
ExternalDocumentID 3142586581
10_1111_cobi_12168
24299086
COBI12168
24480250
ark_67375_WNG_6NDNMZW9_G
US201600130879
Genre article
Journal Article
GeographicLocations Oregon
Willamette River
USA, Oregon, Willamette R
GeographicLocations_xml – name: Oregon
– name: Willamette River
– name: USA, Oregon, Willamette R
GroupedDBID ---
-DZ
.-4
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAUTI
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABWRO
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACPVT
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADACV
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFDN
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AHBTC
AI.
AIAGR
AIRJO
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
D0L
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OES
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QN7
R.K
ROL
RSU
RX1
SA0
SUPJJ
TEORI
TN5
UB1
UKR
UQL
V8K
VH1
VOH
W8V
W99
WBKPD
WHG
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
XSW
YFH
YUY
YV5
YZZ
ZCA
ZCG
ZO4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
ADUKH
AHXOZ
AILXY
AITYG
BSCLL
HGLYW
IPSME
OIG
SAMSI
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
7TN
ID FETCH-LOGICAL-c4748-513adf7918e817fbf978d087bf973c4348c5eadee7ee1bbc84dfba9e9e4a54f43
IEDL.DBID DR2
ISSN 0888-8892
IngestDate Fri Oct 25 00:44:29 EDT 2024
Sat Oct 26 01:15:37 EDT 2024
Thu Oct 10 16:40:16 EDT 2024
Fri Aug 23 01:58:10 EDT 2024
Tue Oct 15 23:45:11 EDT 2024
Sat Aug 24 00:58:46 EDT 2024
Thu Nov 14 15:15:01 EST 2024
Wed Oct 30 09:55:37 EDT 2024
Fri Apr 12 18:11:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords río Willamette
Acta de Especies Amenazadas (ESA)
escollera
section 7 consultation
riprap
Willamette river
mainstem
riverbank stabilization
tallo principal
endangered species act
salmón Chinook
chinook salmon
consultoría Sección 7
estabilización de orillas de ríos
Language English
License Conservation Biology © 2013 Society for Conservation Biology No claim to original US government works.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4748-513adf7918e817fbf978d087bf973c4348c5eadee7ee1bbc84dfba9e9e4a54f43
Notes http://dx.doi.org/10.1111/cobi.12168
ark:/67375/WNG-6NDNMZW9-G
istex:4FFB2834462A91AA141FCAD7B56CA9028B348151
ArticleID:COBI12168
jeff.jorgensen@noaa.gov
email
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24299086
PQID 1462845283
PQPubID 36794
PageCount 11
ParticipantIDs proquest_miscellaneous_1492649566
proquest_miscellaneous_1465175972
proquest_journals_1462845283
crossref_primary_10_1111_cobi_12168
pubmed_primary_24299086
wiley_primary_10_1111_cobi_12168_COBI12168
jstor_primary_24480250
istex_primary_ark_67375_WNG_6NDNMZW9_G
fao_agris_US201600130879
PublicationCentury 2000
PublicationDate December 2013
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: December 2013
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Conservation biology
PublicationTitleAlternate Conservation Biology
PublicationYear 2013
Publisher Blackwell Scientific Publications
Blackwell Publishing Ltd
Wiley Periodicals Inc
Publisher_xml – name: Blackwell Scientific Publications
– name: Blackwell Publishing Ltd
– name: Wiley Periodicals Inc
References Naiman, R. J., and R. Bilby, editors. 1998. River ecology and management. Springer-Verlag, New York.
Crozier, L. G., and R. W. Zabel. 2006. Climate impacts at multiple scales: evidence for differential population responses in juvenile Chinook salmon. Journal of Animal Ecology 75:1100-1109.
Western, D. 2001. Human-modified ecosystems and future evolution. Proceedings of the National Academy of Sciences 98:5458-5465.
Hamlet, A. F., et al. 2010. Final project report for the Columbia Basin Climate Change Scenarios Project. Climate Impacts Group, Seattle. Available from http://warm.atmos.washington.edu/2860/ (accessed April 2013).
Mote, P. W., and E. P. Salaté. 2010. Future climate in the Pacific Northwest. Climate Change 102:29-50.
Kukulka, T., and D. A. Jay. 2003. Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat. Journal of Geophysical Research-Oceans 108 (C9) DOI: 10.1029/2003JC001829.
McClure, M. M., M. Alexander, D. Borggaard, D. Boughton, L. Crozier, R. Griffis, J. C. Jorgensen, S. Lindley, J. Nye, M. J. Rowland, C. Toole, K. and Van Houtan. 2013. Incorporating climate science in applications of the U.S. Endangered Species Act for aquatic species. Conservation Biology 27:1222-1233.
Tabor, R. A., K. L. Fresh, R. M. Piaskowski, H. A. Gearns, and D. B. Hayes. 2011. Habitat use by juvenile Chinook salmon in the nearshore areas of Lake Washington: effects of depth, lakeshore development, substrate, and vegetation. North American Journal of Fisheries Management 31:700-713.
Fischenich, J. D. 2003. Effects of riprap on riverine and riparian ecosystems. ERDC/EL TR-03-4, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi.
Minns, C. K., J. R. M. Kelso, and R. G. Randall. 1996. Detecting the response of fish to habitat alterations in freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 53(supplement 1):403-414.
Friesen, T. A., J. S. Vile, and A. L. Pribyl. 2007. Outmigration of juvenile Chinook salmon in the lower Willamette River, Oregon. Northwest Science 81:173-190.
Hilborn, R., T. P. Quinn, D. E. Schindler, and D. E. Rogers. 2003. Biocomplexity and fisheries sustainability. Proceedings of the National Academy of Sciences 100:6564-6568.
Ward, D. L., A. A. Nigro, R. A. Farr, and C. J. Knutsen. 1994. Influence of waterway development on migrational characteristics of juvenile salmonids in the Lower Willamette River, Oregon. North American Journal of Fisheries Management 14:362-371.
Mantua, N., I. Tohver, and A. Hamlet. 2010. Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Climate Change 102:187-223.
NMFS (National Marine Fisheries Service). 2008. Endangered Species Act Section 7(a)(2) consultation biological opinion and Magnuson-Stevens Fishery Conservation and Management Act essential fish habitat consultation: consultation on the "Willamette River Basin Flood Control Project." National Marine Fisheries Service, Portland, Oregon. Available from http://www.nwr.noaa.gov/Salmon-Hydropower/Willamette-Basin/Willamette-BO.cfm (accessed August 2011).
Willamette/Lower Columbia Technical Recovery Team (WLCTRT). 2006. Revised viability criteria for salmon and steelhead in the Willamette and Lower Columbia Basins. WLCTRT, Seattle. Available from http://www.nwfsc.noaa.gov/trt/wlc_docs/Revised_WLC_Viability_Criteria_Draft_Apr_2006.pdf (accessed June 2012).
Kammerer, J. C. 1990. Largest rivers in the United States. Open-file report 87-242. U.S. Geological Survey, Reston. Available from http://pubs.usgs.gov/of/1987/ofr87-242/pdf/ofr87242.pdf (accessed June 2012).
Carlson, S. M., and T. R. Seamons. 2008. A review of quantitative genetic components of fitness in salmonids: implications for adaptation to future change. Evolutionary Applications 1:222-238.
Hughes, R. M., and J. R. Gammon. 1987. Longitudinal changes in fish assemblages and water quality in the Willamette River, Oregon. Transactions of the American Fisheries Society 116:196-209.
Lewis, C. A., N. P. Lester, A. D. Bradshaw, J. E. Fitzgibbon, K. Fuller, L. Hakanson, and C. Richards. 1996. Considerations of scale in habitat conservation and restoration. Canadian Journal of Fisheries and Aquatic Sciences 53(supplement 1):440-445.
Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestergaard, B. D. Richter, R. E. Sparks, and J. C. Stromberg. 1997. The natural flow regime. BioScience 47:769-784.
Mote, P., L. Brekke, P. B. Duffy, and E. Maurer. 2011. Guidelines for constructing climate scenarios. EOS, Transactions, American Geophysical Union 92:257-258.
Waples, R. S., T. Beechie, and G. R. Pess. 2009. Evolutionary history, habitat disturbance regimes, and anthropogenic changes: What do these mean for resilience of Pacific salmon populations? Ecology and Society 14:3. Available from http://www.ecologyandsociety.org/vol14/iss1/art3/ .
Greene, C. M., J. E. Hall, K. R. Guilbault, and T. P. Quinn. 2009. Improved viability of populations with divergent life history portfolios. Biology Letters 6:382-386.
Myers, J., C. Busack, D. Rawding, A. Marshall, D. Teel, D. M. Van Doornik, and M. T. Maher. 2006. Historical population structure of Pacific salmonids in the Willamette River and Lower Columbia River basins. Technical Memorandum NMFS-NWFSC-73, U.S. Dept. of Commerce, Seattle.
Garland, R. D., K. F. Tiffan, D. W. Rondorf, and L. O. Clark. 2002. Comparison of subyearling fall Chinook salmon's use of riprap revetments and unaltered habitats in Lake Wallula of the Columbia River. North American Journal of Fisheries Management 22:1283-1289.
Mattson, C. R. 1962. Early life history of Willamette River spring Chinook salmon. Oregon Fish Commission, Portland, Oregon.
McElhany, P., M. H. Ruckelshaus, M. J. Ford, T. C. Wainwright, and E. P. Bjorkstedt. 2000. Viable salmon populations and the recovery of evolutionarily significant units. Technical Memorandum NMFS-NWFSC-42, U.S. Dept. of Commerce, Seattle.
Tiffan, K. F., R. D. Garland, and D. W. Rondorf. 2002. Quantifying flow-dependent changes in subyearling fall Chinook salmon rearing habitat using two-dimensional spatially explicit modeling. North American Journal of Fisheries Management 22:713-726.
Quinn, T. P. 2005. The behavior and ecology of Pacific salmon and trout. University of Washington Press, Seattle, WA.
Bottom, D. L., C. A. Simenstad, J. Burke, A. M. Baptista, D. A. Jay, K. K. Jones, E. Casillas, and M. H. Schiewe. 2005. Salmon at river's end: the role of the estuary in the decline and recovery of Columbia River salmon. Technical memorandum NMFS-NWFSC-68. U.S. Dept. of Commerce, Seattle.
Bunn, S. E., and A. H. Arthington. 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30:492-507.
Dauble, D. D., T. L. Page, and R. W. Hanf Jr. 1989. Spatial distribution of juvenile salmonids in the Hanford Reach, Columbia River. Fishery Bulletin 87:775-790.
Poff, N. L., J. D. Olden, D. M. Merritt, and D. M. Pepin. 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences 104:5732-5737.
Snover, A. K., N. J. Mantua, J. S. Littell, M. A. Alexander, and M. M. McClure. 2013. Choosing and using climate change scenarios for ecological impacts assessments. Conservation Biology 27:1147-1157.
Seney, E. E., M. M. McClure, M. J. Rowland, R. A. Lowery, and R. B. Griffis. 2013. Climate change, marine, environments, and the U.S. Endangered Species Act. Conservation Biology 27:1138-1146.
NMFS (National Marine Fisheries Service). 2005. Endangered and threatened species: final listing determinations for 16 ESUs of West Coast salmon, and final 4(d) protective regulations for threatened salmonid ESUs. Federal Register 70:37160-37204.
Schmetterling, D. A., C. G. Clancy, and T. M. Brandt. 2001. Effects of riprap reinforcement on stream salmonids in the western United States. Fisheries 26:6-13.
USACE (U.S. Army Corps of Engineers). 2004. Portland-Vancouver harbor information package. 2nd edition. Reservoir regulation and water quality section. USACE, Portland, Oregon.
Adams, J. C., A. F. Hamlet, and D. P. Lettenmaier. 2009. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrological Processes 23:962-972.
ODFW (Oregon Department of Fish and Wildlife) and NMFS (National Marine Fisheries Service). 2011. Upper Willamette River conservation and recovery plan for Chinook salmon and steelhead. National Marine Fisheries Service, Portland, Oregon. Available from http://www.nwr.noaa.gov/Salmon-Recovery-Planning/Recovery-Domains/Willamette-Lower-Columbia/Will/upload/Will-final-plan.pdf (accessed January 2013).
Teel, D. J., C. Baker, D. R. Kuligowski, T. A. Friesen, and B. Shields. 2009. Genetic stock composition of subyearling Chinook salmon in seasonal floodplain wetlands of the lower Willamette River, Oregon. Transactions of the American Fisheries Society 138:211-217.
2009; 23
2007; 104
2006; 75
1989; 87
2013; 27
2002; 30
2011
2010
1997; 47
2010; 102
1998
2011; 31
2008
2006
2005
2001; 26
2004
2003
2002
2008; 1
1996; 53
2009; 138
2009; 14
2003; 108
1987; 116
1990
2000
2011; 92
2002; 22
1994; 14
2007; 81
1962
2009; 6
2005; 70
2003; 100
2001; 98
e_1_2_7_5_1
e_1_2_7_4_1
Hamlet A. F. (e_1_2_7_14_1) 2010
Bottom D. L. (e_1_2_7_3_1) 2005
McClure M. M. (e_1_2_7_22_1) 2013
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
NMFS (National Marine Fisheries Service) (e_1_2_7_30_1) 2005; 70
e_1_2_7_26_1
Chang H. (e_1_2_7_6_1) 2010
e_1_2_7_27_1
Dauble D. D. (e_1_2_7_8_1) 1989; 87
Gregory S. (e_1_2_7_13_1) 2002
e_1_2_7_29_1
Adams J. C. (e_1_2_7_2_1) 2009; 23
Fischenich J. D. (e_1_2_7_9_1) 2003
Mattson C. R. (e_1_2_7_21_1) 1962
Kammerer J. C. (e_1_2_7_17_1) 1990
Myers J. (e_1_2_7_28_1) 2006
Willamette/Lower Columbia Technical Recovery Team (WLCTRT) (e_1_2_7_46_1) 2006
NMFS (National Marine Fisheries Service) (e_1_2_7_31_1) 2008
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_33_1
e_1_2_7_34_1
e_1_2_7_20_1
ODFW (Oregon Department of Fish and Wildlife) and NMFS (National Marine Fisheries Service) (e_1_2_7_32_1) 2011
e_1_2_7_36_1
e_1_2_7_37_1
USACE (U.S. Army Corps of Engineers) (e_1_2_7_42_1) 2004
e_1_2_7_38_1
e_1_2_7_39_1
McElhany P. (e_1_2_7_23_1) 2000
Quinn T. P. (e_1_2_7_35_1) 2005
References_xml – year: 2011
– volume: 31
  start-page: 700
  year: 2011
  end-page: 713
  article-title: Habitat use by juvenile Chinook salmon in the nearshore areas of Lake Washington: effects of depth, lakeshore development, substrate, and vegetation
  publication-title: North American Journal of Fisheries Management
– volume: 92
  start-page: 257
  year: 2011
  end-page: 258
  article-title: Guidelines for constructing climate scenarios
  publication-title: EOS, Transactions, American Geophysical Union
– volume: 138
  start-page: 211
  year: 2009
  end-page: 217
  article-title: Genetic stock composition of subyearling Chinook salmon in seasonal floodplain wetlands of the lower Willamette River, Oregon
  publication-title: Transactions of the American Fisheries Society
– year: 1962
– volume: 116
  start-page: 196
  year: 1987
  end-page: 209
  article-title: Longitudinal changes in fish assemblages and water quality in the Willamette River, Oregon
  publication-title: Transactions of the American Fisheries Society
– year: 2005
– volume: 1
  start-page: 222
  year: 2008
  end-page: 238
  article-title: A review of quantitative genetic components of fitness in salmonids: implications for adaptation to future change
  publication-title: Evolutionary Applications
– volume: 102
  start-page: 29
  year: 2010
  end-page: 50
  article-title: Future climate in the Pacific Northwest
  publication-title: Climate Change
– volume: 27
  start-page: 1222
  year: 2013
  end-page: 1233
– volume: 47
  start-page: 769
  year: 1997
  end-page: 784
  article-title: The natural flow regime
  publication-title: BioScience
– year: 2003
– start-page: 92
  year: 2002
  end-page: 93
– year: 2000
– volume: 27
  start-page: 1138
  year: 2013
  end-page: 1146
  article-title: Climate change, marine, environments, and the U.S. Endangered Species Act
  publication-title: Conservation Biology
– volume: 70
  start-page: 37160
  year: 2005
  end-page: 37204
  article-title: Endangered and threatened species: final listing determinations for 16 ESUs of West Coast salmon, and final 4(d) protective regulations for threatened salmonid ESUs
  publication-title: Federal Register
– year: 2010
– year: 1998
– volume: 26
  start-page: 6
  year: 2001
  end-page: 13
  article-title: Effects of riprap reinforcement on stream salmonids in the western United States
  publication-title: Fisheries
– volume: 22
  start-page: 1283
  year: 2002
  end-page: 1289
  article-title: Comparison of subyearling fall Chinook salmon's use of riprap revetments and unaltered habitats in Lake Wallula of the Columbia River
  publication-title: North American Journal of Fisheries Management
– volume: 100
  start-page: 6564
  year: 2003
  end-page: 6568
  article-title: Biocomplexity and fisheries sustainability
  publication-title: Proceedings of the National Academy of Sciences
– volume: 22
  start-page: 713
  year: 2002
  end-page: 726
  article-title: Quantifying flow‐dependent changes in subyearling fall Chinook salmon rearing habitat using two‐dimensional spatially explicit modeling
  publication-title: North American Journal of Fisheries Management
– start-page: 69
  year: 2010
  end-page: 150
– volume: 75
  start-page: 1100
  year: 2006
  end-page: 1109
  article-title: Climate impacts at multiple scales: evidence for differential population responses in juvenile Chinook salmon
  publication-title: Journal of Animal Ecology
– volume: 104
  start-page: 5732
  year: 2007
  end-page: 5737
  article-title: Homogenization of regional river dynamics by dams and global biodiversity implications
  publication-title: Proceedings of the National Academy of Sciences
– volume: 14
  start-page: 362
  year: 1994
  end-page: 371
  article-title: Influence of waterway development on migrational characteristics of juvenile salmonids in the Lower Willamette River, Oregon
  publication-title: North American Journal of Fisheries Management
– volume: 6
  start-page: 382
  year: 2009
  end-page: 386
  article-title: Improved viability of populations with divergent life history portfolios
  publication-title: Biology Letters
– volume: 53
  start-page: 440
  issue: supplement 1
  year: 1996
  end-page: 445
  article-title: Considerations of scale in habitat conservation and restoration
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– year: 2008
– year: 2006
– year: 2004
– volume: 81
  start-page: 173
  year: 2007
  end-page: 190
  article-title: Outmigration of juvenile Chinook salmon in the lower Willamette River, Oregon
  publication-title: Northwest Science
– start-page: 87
  year: 1990
  end-page: 242
– volume: 53
  start-page: 403
  issue: supplement 1
  year: 1996
  end-page: 414
  article-title: Detecting the response of fish to habitat alterations in freshwater ecosystems
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 23
  start-page: 962
  year: 2009
  end-page: 972
  article-title: Implications of global climate change for snowmelt hydrology in the twenty‐first century
  publication-title: Hydrological Processes
– volume: 98
  start-page: 5458
  year: 2001
  end-page: 5465
  article-title: Human‐modified ecosystems and future evolution
  publication-title: Proceedings of the National Academy of Sciences
– volume: 102
  start-page: 187
  year: 2010
  end-page: 223
  article-title: Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State
  publication-title: Climate Change
– volume: 108
  issue: C9
  year: 2003
  article-title: Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow‐water habitat
  publication-title: Journal of Geophysical Research‐Oceans
– start-page: 13
  year: 1998
  end-page: 42
– volume: 87
  start-page: 775
  year: 1989
  end-page: 790
  article-title: Spatial distribution of juvenile salmonids in the Hanford Reach, Columbia River
  publication-title: Fishery Bulletin
– volume: 27
  start-page: 1147
  year: 2013
  end-page: 1157
  article-title: Choosing and using climate change scenarios for ecological impacts assessments
  publication-title: Conservation Biology
– volume: 30
  start-page: 492
  year: 2002
  end-page: 507
  article-title: Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity
  publication-title: Environmental Management
– volume: 14
  start-page: 3
  year: 2009
  article-title: Evolutionary history, habitat disturbance regimes, and anthropogenic changes: What do these mean for resilience of Pacific salmon populations?
  publication-title: Ecology and Society
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1365-2656.2006.01130.x
– start-page: 87
  volume-title: Largest rivers in the United States
  year: 1990
  ident: e_1_2_7_17_1
  contributor:
    fullname: Kammerer J. C.
– start-page: 69
  volume-title: Oregon climate assessment report
  year: 2010
  ident: e_1_2_7_6_1
  contributor:
    fullname: Chang H.
– volume-title: Revised viability criteria for salmon and steelhead in the Willamette and Lower Columbia Basins
  year: 2006
  ident: e_1_2_7_46_1
  contributor:
    fullname: Willamette/Lower Columbia Technical Recovery Team (WLCTRT)
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1752-4571.2008.00025.x
– ident: e_1_2_7_15_1
  doi: 10.1073/pnas.1037274100
– ident: e_1_2_7_37_1
  doi: 10.1111/cobi.12167
– start-page: 1222
  volume-title: Incorporating climate science in applications of the U.S. Endangered Species Act for aquatic species
  year: 2013
  ident: e_1_2_7_22_1
  contributor:
    fullname: McClure M. M.
– volume-title: Historical population structure of Pacific salmonids in the Willamette River and Lower Columbia River basins
  year: 2006
  ident: e_1_2_7_28_1
  contributor:
    fullname: Myers J.
– ident: e_1_2_7_24_1
  doi: 10.1139/f95-262
– ident: e_1_2_7_16_1
  doi: 10.1577/1548-8659(1987)116<196:LCIFAA>2.0.CO;2
– volume: 87
  start-page: 775
  year: 1989
  ident: e_1_2_7_8_1
  article-title: Spatial distribution of juvenile salmonids in the Hanford Reach, Columbia River
  publication-title: Fishery Bulletin
  contributor:
    fullname: Dauble D. D.
– volume-title: The behavior and ecology of Pacific salmon and trout
  year: 2005
  ident: e_1_2_7_35_1
  contributor:
    fullname: Quinn T. P.
– ident: e_1_2_7_45_1
  doi: 10.1073/pnas.101093598
– start-page: 92
  volume-title: Willamette River basin: trajectories of environmental and ecological change
  year: 2002
  ident: e_1_2_7_13_1
  contributor:
    fullname: Gregory S.
– ident: e_1_2_7_20_1
  doi: 10.1007/s10584-010-9845-2
– volume: 23
  start-page: 962
  year: 2009
  ident: e_1_2_7_2_1
  article-title: Implications of global climate change for snowmelt hydrology in the twenty‐first century
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.7201
  contributor:
    fullname: Adams J. C.
– ident: e_1_2_7_26_1
  doi: 10.1007/s10584-010-9848-z
– ident: e_1_2_7_27_1
  doi: 10.1029/2011EO310001
– volume-title: Salmon at river's end: the role of the estuary in the decline and recovery of Columbia River salmon. Technical memorandum NMFS‐NWFSC‐68
  year: 2005
  ident: e_1_2_7_3_1
  contributor:
    fullname: Bottom D. L.
– ident: e_1_2_7_12_1
  doi: 10.1098/rsbl.2009.0780
– volume-title: Upper Willamette River conservation and recovery plan for Chinook salmon and steelhead. National Marine Fisheries Service, Portland, Oregon
  year: 2011
  ident: e_1_2_7_32_1
  contributor:
    fullname: ODFW (Oregon Department of Fish and Wildlife) and NMFS (National Marine Fisheries Service)
– ident: e_1_2_7_41_1
  doi: 10.1577/1548-8675(2002)022<0713:QFDCIS>2.0.CO;2
– ident: e_1_2_7_36_1
  doi: 10.1577/1548-8446(2001)026<0006:EORBRO>2.0.CO;2
– ident: e_1_2_7_29_1
  doi: 10.1007/978-1-4612-1652-0
– ident: e_1_2_7_11_1
  doi: 10.1577/1548-8675(2002)022<1283:COSFCS>2.0.CO;2
– ident: e_1_2_7_4_1
  doi: 10.1007/s00267-002-2737-0
– ident: e_1_2_7_19_1
  doi: 10.1139/f96-021
– ident: e_1_2_7_44_1
  doi: 10.1577/1548-8675(1994)014<0362:IOWDOM>2.3.CO;2
– volume-title: Portland‐Vancouver harbor information package. 2nd edition. Reservoir regulation and water quality section
  year: 2004
  ident: e_1_2_7_42_1
  contributor:
    fullname: USACE (U.S. Army Corps of Engineers)
– volume-title: Viable salmon populations and the recovery of evolutionarily significant units. Technical Memorandum NMFS‐NWFSC‐42
  year: 2000
  ident: e_1_2_7_23_1
  contributor:
    fullname: McElhany P.
– ident: e_1_2_7_25_1
  doi: 10.1007/978-1-4612-1652-0_2
– ident: e_1_2_7_39_1
  doi: 10.1080/02755947.2011.611424
– volume: 70
  start-page: 37160
  year: 2005
  ident: e_1_2_7_30_1
  article-title: Endangered and threatened species: final listing determinations for 16 ESUs of West Coast salmon, and final 4(d) protective regulations for threatened salmonid ESUs
  publication-title: Federal Register
  contributor:
    fullname: NMFS (National Marine Fisheries Service)
– volume-title: Effects of riprap on riverine and riparian ecosystems
  year: 2003
  ident: e_1_2_7_9_1
  contributor:
    fullname: Fischenich J. D.
– ident: e_1_2_7_18_1
  doi: 10.1029/2003JC001829
– ident: e_1_2_7_34_1
  doi: 10.1073/pnas.0609812104
– ident: e_1_2_7_10_1
  doi: 10.3955/0029-344X-81.3.173
– volume-title: Early life history of Willamette River spring Chinook salmon
  year: 1962
  ident: e_1_2_7_21_1
  contributor:
    fullname: Mattson C. R.
– ident: e_1_2_7_40_1
  doi: 10.1577/T08-084.1
– volume-title: Final project report for the Columbia Basin Climate Change Scenarios Project
  year: 2010
  ident: e_1_2_7_14_1
  contributor:
    fullname: Hamlet A. F.
– volume-title: Endangered Species Act Section 7(a)(2) consultation biological opinion and Magnuson‐Stevens Fishery Conservation and Management Act essential fish habitat consultation: consultation on the “Willamette River Basin Flood Control Project
  year: 2008
  ident: e_1_2_7_31_1
  contributor:
    fullname: NMFS (National Marine Fisheries Service)
– ident: e_1_2_7_38_1
  doi: 10.1111/cobi.12163
– ident: e_1_2_7_43_1
  doi: 10.5751/ES-02626-140103
– ident: e_1_2_7_33_1
  doi: 10.2307/1313099
SSID ssj0009514
Score 2.1712577
Snippet Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity....
Abstract Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human...
SourceID proquest
crossref
pubmed
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 1201
SubjectTerms Acta de Especies Amenazadas (ESA)
Animals
beaches
chinook salmon
Climate Change
consultoría Sección 7
Ecosystem
Endangered & extinct species
endangered species
Endangered Species - legislation & jurisprudence
endangered species act
escollera
estabilización de orillas de ríos
Freshwater
Habitats
humans
life history
long term effects
mainstem
managers
Marine conservation
mouth
Oncorhynchus tshawytscha
Oregon
Population Dynamics
predators
riprap
riverbank stabilization
Rivers
rocks
río Willamette
Salmon
Salmon - physiology
salmón Chinook
section 7 consultation
Shoreline protection
shorelines
Special Section: Incorporating Climate Change into Risk Analyses under the U.S. Endangered Species Act
tallo principal
Willamette river
Title Combined Effects of Climate Change and Bank Stabilization on Shallow Water Habitats of Chinook Salmon
URI https://api.istex.fr/ark:/67375/WNG-6NDNMZW9-G/fulltext.pdf
https://www.jstor.org/stable/24480250
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.12168
https://www.ncbi.nlm.nih.gov/pubmed/24299086
https://www.proquest.com/docview/1462845283
https://search.proquest.com/docview/1465175972
https://search.proquest.com/docview/1492649566
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_ngeCL3-f1PCWi-CD0uLTpJgFfvL2PVbgVXJc9BAlJk57LHu2xH-j51zuTbNc9kQOFPqRk0jbJTPObdvIbQl4Zxnyn8PupNaxIuRE8NQ5OmYPVQWXOq_BN97Tf6Q35h7PibIO8bffCRH6I1Qc3tIzwvkYDN3a2ZuRlY8fIjdDBnb4sFxjPdfgpW2PcjcTe4OKlEm675CbFMJ7fTa-tRrcq0wBGxeH90YYn_g14XsexYSE6vke-tl2I8SeTvcXc7pU__2B3_N8-3id3lwiVvosq9YBs-PohuR1zVl5B6SjwXF89IpgRAvxq72ikQJ7RpqLdizFgYE_jrgVqakcPTD2hAGoxDDdu-qRwDDCLS_OdjkB6SntQC7A3XuLbuAboTwfmAmzkMRkeH33u9tJl1oa05ILLtGC5cZVQTHrJRGUr8FPdvhRYyEuec1kWGKXthffM2lJyV1mjvPLcFLzi-RbZrJvabxPqpClzZqwwEhwZzAlifOU4KJfyoFs8IS_b2dOXkZxDt04NDp0OQ5eQbZhYbc7hramHgww59fB_rRQqIa_DbK9am-kEI91EoUf9E93pH_ZPv4yUPknIVlCHlSCgIonwMSG7rX7opfXP0J2CVR9pcxLyYlUNdos_Y0ztm0WQKQC6KZHdJKMAr4IH20nIk6h7aw-AQEJCzZugQTcMgO5-PHgfSjv_IvyU3Mkw90eI3dklm_Ppwj8DBDa3z4Ol_QK6aSeN
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoEYJLeZYGChiBOCClahInto90-9hCN0hsV1v1YjmxA6utkmofgvLrmbGzyxahSiDl4MiTlz1jf-OMvyHkrY4im6V2Nyx0lIZMcxZqA6eRgdlBxsZKt6bby7PugH08S8_a2BzcC-P5IZYLbmgZbrxGA8cF6RUrL5tihOQImVgjt8HeE8zcsP8lXuHc9dTe4OSFAh7cspNiIM_va6_NR2uVbgClYgP_WAQo_g16Xkeybio6vO_zrU4dgyFGoIx35rNip_z5B7_jf3_lA7LRglT6wWvVQ3LL1o_IHZ-28gpKB47q-uoxwaQQ4FpbQz0L8pQ2Fe1cjAAGW-o3LlBdG7qn6zEFXIuRuH7fJ4Wjj4lcmu90CNIT2oVaQL7-Ft9GNaB_2tcXYCZPyODw4LTTDdvEDWHJOBNhGiXaVFxGwoqIV0UFrqrZFRwLSckSJsoUA7UttzYqilIwUxVaWmmZTlnFkk2yXje13SLUCF0mkS64FuDLYFoQbSvDQL-kBfViAXmz6D516fk51MKvwaZTrukCsgU9q_RXGDjVoB8jrR7-shVcBuSd6-7l1XoyxmA3nqphfqSyfD_vnQ-lOgrIptOHpSAAI4EIMiDbCwVR7QAwRY8KJn5kzgnI62U1mC7-j9G1beZOJgX0Jnl8k4wEyApObBaQp175Vl4AsYSAmvdOhW5oANX5vHfsSs_-RfgVuds97Z2ok-P803NyL8ZUIC6UZ5uszyZz-wIA2ax46czuFxhNK6U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5tQyBe-D0WGGAE4gEp05I4iSPxwrp1HbCAKFUnJGQ5sbNVnZKpawXjr-fObkqH0CSQ8uDI5yS27-LvkvN3AC9VEJgkNtt-oYLY5yrlvtJ4GmhcHbJQm8x-0z3Mk96AvzuKj1bgTbsXxvFDLD64kWXY9zUZ-Jmuloy8bIoRcSMkYhWu8QShL0Giz-ES5a5j9kYfzxd43zk5KcXx_G57aTlarVSDIJXG90cbn_g35HkZyNqVqHsbvrV9cAEo463ZtNgqf_5B7_i_nbwDt-YQlb11OnUXVkx9D667pJUXWNqzRNcX94FSQqBjbTRzHMjnrKlY53SEINgwt22BqVqzHVWPGaJaisN1uz4ZHn1K49J8Z0OUnrAe1iLudZc4GdWI_VlfnaKRPIBBd-9Lp-fP0zb4JU-58OMgUrpKs0AYEaRVUaGjqrdFSoWo5BEXZUxh2iY1JiiKUnBdFSozmeEq5hWP1mGtbmqzAUwLVUaBKlIl0JOhpCDKVJqjdmUGlYt78KKdPXnm2Dlk69XQ0Ek7dB5s4MRKdYyvTTnoh0SqRz9sRZp58MrO9qK1mowp1C2N5TDfl0m-mx9-HWZy34N1qw4LQYRFgvCjB5utfsi5-Z-TP4XLPvHmePB8UY2GS39jVG2amZWJEbtlaXiVTIaAFV3YxIOHTveWHoCQhMCa11aDrhgA2fm4c2BLj_5F-Bnc-LTblR8O8veP4WZIeUBsHM8mrE0nM_ME0di0eGqN7hdstCpU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Effects+of+Climate+Change+and+Bank+Stabilization+on+Shallow+Water+Habitats+of+Chinook+Salmon&rft.jtitle=Conservation+biology&rft.au=Jorgensen%2C+Jeffrey+C&rft.au=McClure%2C+Michelle+M&rft.au=Sheer%2C+Mindi+B&rft.au=Munn%2C+Nancy+L&rft.date=2013-12-01&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=27&rft.issue=6&rft.spage=1201&rft.epage=1211&rft_id=info:doi/10.1111%2Fcobi.12168&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon