Solid polymer electrolytes based on polystyrene‐polyether block copolymers having branched ether structure
To obtain solid polymer electrolytes (SPEs) having high ionic conductivity together with mechanical integrity, we have synthesized polystyrene (PSt)‐polyether (PE) diblock copolymers via one‐pot anionic polymerization. The PSt block is expected to aggregate to act as hard fillers in the SPE to enhan...
Saved in:
Published in | Polymers for advanced technologies Vol. 30; no. 3; pp. 736 - 742 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To obtain solid polymer electrolytes (SPEs) having high ionic conductivity together with mechanical integrity, we have synthesized polystyrene (PSt)‐polyether (PE) diblock copolymers via one‐pot anionic polymerization. The PSt block is expected to aggregate to act as hard fillers in the SPE to enhance the mechanical property. The PE block consists of random copolymer (P(EO‐r‐MEEGE)) of ethylene oxide (EO) and 2‐(2‐methoxyethoxy) ethyl glycidyl ether (MEEGE) in different molar ratios ([EO]/[MEEGE] = 100/0, 86/14, 75/25, 68/32, and 41/59). The introduction of the MEEGE moiety in PEO reduced the crystallinity of PEO, and the fast motion of the MEEGE side chain caused plasticization of the PE block, thereby contributing to the fast ion transport. SPEs were fabricated by mixing the obtained diblock copolymer (PSEx) and lithium bis(trifluoromethanesulfonyl) amide (LiTFSA) with [Li]/[O] = 0.05. Ionic conductivity of the obtained SPEs was dependent on the molar ratio of EO in the PE block (x) as well as the weight fraction of PE block (fPE) in the block copolymer. PSE0.86 (fPE = 0.65) exhibited high ionic conductivity (3.3 × 10−5 S cm−1 at 30°C; 1.1 × 10−4 S cm−1 at 60°C) comparable with that of P(EO‐r‐MEEGE) (PE0.85; fPE = 1.00) (9.8 × 10−5 S cm−1 at 30°C; 4.0 × 10−4 S cm−1 at 60°C). |
---|---|
ISSN: | 1042-7147 1099-1581 |
DOI: | 10.1002/pat.4511 |