Sequential Monte Carlo Methods for Estimating Dynamic Microeconomic Models
This paper develops estimators for dynamic microeconomic models with serially correlated unobserved state variables using sequential Monte Carlo methods to estimate the parameters and the distribution of the unobservables. If persistent unobservables are ignored, the estimates can be subject to a dy...
Saved in:
Published in | Journal of applied econometrics (Chichester, England) Vol. 31; no. 5; pp. 773 - 804 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Chichester
Blackwell Publishing Ltd
01.08.2016
Wiley (Variant) Wiley-Blackwell Wiley Periodicals Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper develops estimators for dynamic microeconomic models with serially correlated unobserved state variables using sequential Monte Carlo methods to estimate the parameters and the distribution of the unobservables. If persistent unobservables are ignored, the estimates can be subject to a dynamic form of sample selection bias. We focus on single-agent dynamic discrete-choice models and dynamic games of incomplete information. We propose a full-solution maximum likelihood procedure and a two-step method and use them to estimate an extended version of the capital replacement model of Rust with the original data and in a Monte Carlo study. |
---|---|
AbstractList | Summary
This paper develops estimators for dynamic microeconomic models with serially correlated unobserved state variables using sequential Monte Carlo methods to estimate the parameters and the distribution of the unobservables. If persistent unobservables are ignored, the estimates can be subject to a dynamic form of sample selection bias. We focus on single‐agent dynamic discrete‐choice models and dynamic games of incomplete information. We propose a full‐solution maximum likelihood procedure and a two‐step method and use them to estimate an extended version of the capital replacement model of Rust with the original data and in a Monte Carlo study. Copyright © 2015 John Wiley & Sons, Ltd. This paper develops estimators for dynamic microeconomic models with serially correlated unobserved state variables using sequential Monte Carlo methods to estimate the parameters and the distribution of the unobservables. If persistent unobservables are ignored, the estimates can be subject to a dynamic form of sample selection bias. We focus on single‐agent dynamic discrete‐choice models and dynamic games of incomplete information. We propose a full‐solution maximum likelihood procedure and a two‐step method and use them to estimate an extended version of the capital replacement model of Rust with the original data and in a Monte Carlo study. Copyright © 2015 John Wiley & Sons, Ltd. This paper develops estimators for dynamic microeconomic models with serially correlated unobserved state variables using sequential Monte Carlo methods to estimate the parameters and the distribution of the unobservables. If persistent unobservables are ignored, the estimates can be subject to a dynamic form of sample selection bias. We focus on single-agent dynamic discrete-choice models and dynamic games of incomplete information. We propose a full-solution maximum likelihood procedure and a two-step method and use them to estimate an extended version of the capital replacement model of Rust with the original data and in a Monte Carlo study. Copyright 2015 John Wiley & Sons, Ltd. Copyright John Wiley & Sons. Reproduced with Permission. An electronic version of this article is available online at http://www.interscience.wiley.com This paper develops estimators for dynamic microeconomic models with serially correlated unobserved state variables using sequential Monte Carlo methods to estimate the parameters and the distribution of the unobservables. If persistent unobservables are ignored, the estimates can be subject to a dynamic form of sample selection bias. We focus on single-agent dynamic discrete-choice models and dynamic games of incomplete information. We propose a full-solution maximum likelihood procedure and a two-step method and use them to estimate an extended version of the capital replacement model of Rust with the original data and in a Monte Carlo study. Summary This paper develops estimators for dynamic microeconomic models with serially correlated unobserved state variables using sequential Monte Carlo methods to estimate the parameters and the distribution of the unobservables. If persistent unobservables are ignored, the estimates can be subject to a dynamic form of sample selection bias. We focus on single-agent dynamic discrete-choice models and dynamic games of incomplete information. We propose a full-solution maximum likelihood procedure and a two-step method and use them to estimate an extended version of the capital replacement model of Rust with the original data and in a Monte Carlo study. Copyright © 2015John Wiley & Sons, Ltd. |
Author | Blevins, Jason R. |
Author_xml | – sequence: 1 givenname: Jason R. surname: Blevins fullname: Blevins, Jason R. email: blevins.141@osu.edu organization: Department of Economics, Ohio State University, OH, Columbus, USA |
BackLink | http://www.econis.eu/PPNSET?PPN=887346774$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften |
BookMark | eNp10MtuEzEUBmALFYm0IPECiJHYsJlwbI9vyyoNLVVTBJTLznI9DjhM7GI7onl7HKakEoKVZfnz0X_-Q3QQYnAIPcUwxQDk1cq4KekEPEATDEq1mDB2gCYgJW0FYeQROsx5BQAcQEzQ-Qf3Y-NC8WZoFjEU18xMGmKzcOVb7HOzjKmZ5-LXpvjwtTnZBrP2tll4m6KzMcTft9i7IT9GD5dmyO7J3XmEPr6eX83O2ou3p29mxxet7UQHrTSml04KLhm-ZuyaQ0ctVTVbL3ppbc9NR7jAVDmKqZAClqqnwmKrFKfc0CP0cpx7k2LNnote-2zdMJjg4iZrLCkDwgQmlb74i67iJoWarioMjAjGd-r5qHYL-axvUl03bbWUgnZciK6K6Sjq1jknt9TWl9pILSwZP2gMele-ruXrXfn3Gfcf_gz9B21H-tMPbvtfp8-P53f-2ehXucS094RzULyT9_N8Lu52_27Sd80FFUx_vjzV7798ulTduyt9Qn8BWyeqTQ |
CODEN | JAECET |
CitedBy_id | crossref_primary_10_1016_j_jeconom_2018_11_002 crossref_primary_10_2139_ssrn_3383739 crossref_primary_10_1111_jori_12332 crossref_primary_10_2139_ssrn_4274528 crossref_primary_10_1016_j_jeconom_2017_04_004 crossref_primary_10_2139_ssrn_2666737 crossref_primary_10_2139_ssrn_3638618 crossref_primary_10_1093_restud_rdac061 crossref_primary_10_1016_j_jedc_2018_01_021 crossref_primary_10_1109_OJSP_2020_3038048 crossref_primary_10_2139_ssrn_2750177 crossref_primary_10_1080_07474938_2022_2140982 crossref_primary_10_2139_ssrn_1674027 crossref_primary_10_2139_ssrn_3668248 crossref_primary_10_1287_mnsc_2017_2814 crossref_primary_10_2139_ssrn_3458037 crossref_primary_10_2139_ssrn_2926442 crossref_primary_10_3390_jrfm14100467 crossref_primary_10_2139_ssrn_2506349 crossref_primary_10_2139_ssrn_2794884 crossref_primary_10_1111_iere_12470 crossref_primary_10_2139_ssrn_2013359 crossref_primary_10_2139_ssrn_2129303 crossref_primary_10_2139_ssrn_1957992 crossref_primary_10_1016_j_ijresmar_2019_09_005 crossref_primary_10_3390_sym10100445 crossref_primary_10_1257_mic_20190051 crossref_primary_10_1287_opre_2018_1750 |
Cites_doi | 10.1111/j.1467-937X.2007.00437.x 10.3982/ECTA5658 10.1016/S1573-4412(07)06063-1 10.1111/1468-0262.00297 10.1016/S1573-4412(07)06076-X 10.1108/S0731-9053(2013)0000032003 10.1017/CCOL0521444608.005 10.2307/2298122 10.3982/ECTA7743 10.2139/ssrn.1654338 10.1080/01621459.1999.10474153 10.2307/145996 10.1049/ip-f-2.1993.0015 10.1214/aos/1176350374 10.2307/1913622 10.1007/978-1-4757-2545-2 10.2307/2109768 10.1115/1.3662552 10.1007/978-1-4757-3437-9 10.1016/j.jeconom.2009.09.007 10.3982/QE117 10.1023/A:1007743111861 10.2307/1911259 10.1111/j.1468-0262.2007.00796.x 10.1016/S1573-4412(05)80020-0 10.3982/QE41 10.2307/1912352 10.1111/1468-0262.00340 10.1080/01621459.1998.10473765 10.1111/j.1468-0262.2007.00731.x 10.1080/07362994.2012.684323 10.1017/S0266466610000599 10.1080/07474938.2011.607089 10.1016/S1573-4412(05)80005-4 10.1080/07474938.2011.607333 10.1016/j.jeconom.2012.05.023 10.3982/ECTA7925 10.1002/jae.578 10.1007/0-387-28982-8 10.3982/ECTA6750 10.2307/1912835 10.3982/ECTA7292 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Copyright © 2016 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION OQ6 8BJ FQK JBE JQ2 |
DOI | 10.1002/jae.2470 |
DatabaseName | Istex CrossRef ECONIS International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISSN | 1099-1255 |
EndPage | 804 |
ExternalDocumentID | 4143585331 887346774 10_1002_jae_2470 JAE2470 26609648 ark_67375_WNG_RXVN94QT_D |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29J 2AX 31~ 33P 3R3 3V. 3WU 4.4 41~ 4ZD 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 5GY 5VS 66C 702 7PT 7WY 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FL 8R4 8R5 8UM 8VB 930 A04 AABNI AAESR AAHHS AAONW AAOUF AARRQ AASGY AAXLS AAXRX AAYOK AAZKR ABBHK ABCQN ABCUV ABEML ABIJN ABJCF ABJNI ABKVW ABLJU ABPFR ABPQH ABPVW ABSOO ABTAH ABUWG ABXSQ ABYAD ABYYQ ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACGFS ACHQT ACIWK ACPOU ACSCC ACTWD ACUBG ACXQS ADACV ADBBV ADEMA ADEOM ADGDI ADIZJ ADKYN ADMGS ADMHG ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUPB AEUQT AEUYR AFAIT AFBPY AFFNX AFFPM AFGKR AFKFF AFKRA AFPWT AFTQD AFXHP AFZJQ AHAJD AHBTC AIFKG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB APTMU ARAPS ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BEZIV BFHJK BGLVJ BMXJE BNVMJ BPHCQ BQESF BROTX BRXPI BSCLL BY8 CBXGM CCKSF CCPQU CS3 CYVLN D-C D-D DCZOG DJZPD DPXWK DR2 DRFUL DRSSH DU5 DWQXO EBS EBU EJD F00 F01 FEDTE FRNLG FVMVE G-S G.N G50 GNP GODZA GROUPED_ABI_INFORM_ARCHIVE GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUPYA HBH HCIFZ HF~ HGD HGLYW HHY HVGLF HZ~ IPSME IX1 J0M JAAYA JAS JBC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPC JPL JPPEU JSODD JST K1G K60 K6V K6~ K7- KQQ L6V LATKE LAW LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M0C M55 M7S MEWTI MK4 MRFUL MRSSH MSFUL MSSSH MVM MXFUL MXSSH N04 N06 N9A NF~ NNB O66 O9- OIG P2P P2W P2Y P4C P62 PALCI PQBIZ PQBZA PQQKQ PROAC PTHSS Q.N Q11 Q2X QB0 QRW QWB R.K RIWAO RJQFR RNS ROL RWI RX1 SA0 SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WEBCB WIB WIH WII WOHZO WQZ WRC WSUWO WWB WXSBR XG1 XPP XV2 Y6R ZL0 ZY4 ZZTAW ~IA ~WP AAHQN AAMMB AAMNL AAYCA ABAWQ ACHJO ACXJH ACYXJ AEFGJ AEYWJ AFWVQ AGHNM AGKTX AGQPQ AGXDD AIDQK AIDYY ALVPJ AMVHM ASMEE AANHP ACRPL ADNMO AFYRF AAYXX CITATION PHGZM PHGZT OQ6 8BJ FQK JBE JQ2 |
ID | FETCH-LOGICAL-c4740-8aad8e876851b55b6043c39725d7d8ccd6a4267139e3137870f9d37c1c99636a3 |
IEDL.DBID | DR2 |
ISSN | 0883-7252 |
IngestDate | Fri Jul 11 02:54:48 EDT 2025 Sun Jul 13 03:36:33 EDT 2025 Sat Mar 08 16:11:38 EST 2025 Thu Apr 24 22:52:15 EDT 2025 Tue Jul 01 04:02:59 EDT 2025 Wed Jan 22 16:25:30 EST 2025 Thu Jul 03 22:16:58 EDT 2025 Wed Oct 30 09:55:49 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4740-8aad8e876851b55b6043c39725d7d8ccd6a4267139e3137870f9d37c1c99636a3 |
Notes | ArticleID:JAE2470 ark:/67375/WNG-RXVN94QT-D istex:D3BB427F894098961ABD111504BE58B87387449E ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1810527562 |
PQPubID | 37372 |
PageCount | 32 |
ParticipantIDs | proquest_miscellaneous_1835025712 proquest_journals_1810527562 econis_primary_887346774 crossref_citationtrail_10_1002_jae_2470 crossref_primary_10_1002_jae_2470 wiley_primary_10_1002_jae_2470_JAE2470 jstor_primary_26609648 istex_primary_ark_67375_WNG_RXVN94QT_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2016 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: August 2016 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Journal of applied econometrics (Chichester, England) |
PublicationTitleAlternate | J. Appl. Econ |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley (Variant) Wiley-Blackwell Wiley Periodicals Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley (Variant) – name: Wiley-Blackwell – name: Wiley Periodicals Inc |
References | Whiteley N. 2012. Sequential Monte Carlo samplers: error bounds and insensitivity to initial conditions. Stochastic Analysis and Applications 30: 774-798. Keane M, Wolpin KI.. The solution and estimation of discrete choice dynamic programming models by simulation and interpolation: Monte Carlo evidence. Review of Economics and Statistics 76 1994: 648-672. Aguirregabiria V, Mira P. 2002. Swapping the nested fixed point algorithm: a class of estimators for discrete Markov decision models. Econometrica 70: 1519-1543. Pakes A, Pollard D. 1989. Simulation and the asymptotics of optimization estimators. Econometrica 57: 1027-1057. Su CL, Judd KL.2012. Constrained optimization approaches to estimation of structural models. Econometrica 80: 2213-2230. Timmins C. 2002. Measuring the dynamic efficiency costs of regulators preferences: municipal water utilities in the arid West. Econometrica 70: 603-629. Aguirregabiria V, Mira P. 2007. Sequential estimation of dynamic discrete games. Econometrica 75: 1-53. Stinebrickner TR. 2000. Serially correlated variables in dynamic, discrete choice models. Journal of Applied Econometrics 15: 595-624. Hotz VJ, Miller RA. 1993. Conditional choice probabilities and the estimation of dynamic models. Review of Economic Studies 60: 497-529. Creal D. 2012. A survey of sequential Monte Carlo methods for economics and finance. Econometric Reviews 31: 245-296. Norets A. 2009b. Inference in dynamic discrete choice models with serially correlated unobserved state variables. Econometrica 77: 1665-1682. Flury T, Shephard N. 2011. Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models. Econometric Theory 27: 933-956. Cappé O, Moulines E, Ryden T. 2005. Inference in Hidden Markov Models, Springer: New York. Imai S, Jain N, Ching A. 2009. Bayesian estimation of dynamic discrete choice models. Econometrica 77: 1865-1899. Nolan D, Pollard D. 1987. U-processes: rates of convergence. Annals of Statistics 15: 780-799. Arcidiacono P, Miller RA. 2011. Conditional choice probability estimation of dynamic discrete choice models with unobserved heterogeneity. Econometrica 79: 1823-1867. Del Moral P, Ledoux M. 2000. Convergence of empirical processes for interacting particle systems with applications to nonlinear filtering. Journal of Theoretical Probability 13: 225-257. Rust J. 1987. Optimal replacement of GMC bus engines: an empirical model of Harold Zurcher. Econometrica 55: 999-1013. Heckman JJ. 1979. Sample selection bias as a specification error. Econometrica 47: 153-161. Blevins JR. 2014. Nonparametric identification of dynamic decision processes with discrete and continuous choices. Quantitative Economics 5: 531-554. Pitt MK, Shephard N. 1999. Filtering via simulation: auxiliary particle filters. Journal of the American Statistical Association 94: 590-591. Hu Y, Shum M. 2013. Identifying dynamic games with serially-correlated unobservables. In Advances in Econometrics 31: 97-113. Judd KL. 1998. Numerical Methods in Economics, MIT Press: Cambridge, MA. Hu Y, Shum M. 2012. Nonparametric identification of dynamic models with unobserved state variables. Journal of Econometrics 171: 32-44. Norets A. 2012. Estimation of dynamic discrete choice models using artificial neural network approximations. Econometric Reviews 31: 84-106. Gordon N, Salmond D, Smith A. 1993. Novel approach to nonlinear/non-gaussian Bayesian state estimation. IEEE Proceedings F: Radar and Signal Processing 140: 107-113. Kalman RE. 1960. A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering 82: 35-45. Ryan S. 2012. The costs of environmental regulation in a concentrated industry. Econometrica 80: 1019-1061. Liu J. 2001. Monte Carlo Strategies in Scientific Computing, Springer: New York. Norets A. 2010. Continuity and differentiability of expected value functions in dynamic discrete choice models. Quantitative Economics 1: 305-322. Aguirregabiria V, Mira P. 2010. Dynamic discrete choice structural models: a survey. Journal of Econometrics 156: 38-67. Liu JS, Chen R. 1998. Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association 93: 1032-1044. van der Vaart AW, Wellner JA. 1996. Weak Convergence and Empirical Processes, Springer: New York. Pakes A. 1986. Patents as options: some estimates of the value of holding European patent stocks. Econometrica 54: 755-784. A Doucet, N de Freitas, and N Gordon (eds). 2001. Sequential Monte Carlo Methods in Practice Springer: New York. Fernández-Villaverde J, Rubio-Ramírez JF. 2007. Estimating macroeconomic models: a likelihood approach. Review of Economic Studies 74: 1059-1087. Bajari P, Benkard CL, Levin J. 2007. Estimating dynamic models of imperfect competition. Econometrica 75: 1331-1370. Eckstein Z, Wolpin KI. 1989. The specification and estimation of dynamic stochastic discrete choice models: a survey. Journal of Human Resources 24: 562-598. 1987; 55 2012; 80 2010 1993; 60 1986; 54 1998 2007 1996 1993; 140 2011; 79 2005 1994 2007; 74 2007; 75 1989; 24 2012; 31 1987; 15 2012; 30 2009; 77 1960; 82 2014; 5 2009b; 77 2010; 1 1979; 47 2001 2000; 15 2000; 13 2009a 2010; 156 2013; 31 2012; 171 2002; 70 2015 2014 1981 1998; 93 1999; 94 2011; 27 1989; 57 1994; 76 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_45_1 Künsch HR (e_1_2_11_32_1) 2001 e_1_2_11_47_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 Rust J (e_1_2_11_46_1) 1994 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_7_1 Judd KL (e_1_2_11_29_1) 1998 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Liu J (e_1_2_11_33_1) 2001 Heckman JJ (e_1_2_11_24_1) 1981 Hajivassiliou VA (e_1_2_11_22_1) 1994 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – reference: Whiteley N. 2012. Sequential Monte Carlo samplers: error bounds and insensitivity to initial conditions. Stochastic Analysis and Applications 30: 774-798. – reference: Cappé O, Moulines E, Ryden T. 2005. Inference in Hidden Markov Models, Springer: New York. – reference: Blevins JR. 2014. Nonparametric identification of dynamic decision processes with discrete and continuous choices. Quantitative Economics 5: 531-554. – reference: Pakes A. 1986. Patents as options: some estimates of the value of holding European patent stocks. Econometrica 54: 755-784. – reference: Gordon N, Salmond D, Smith A. 1993. Novel approach to nonlinear/non-gaussian Bayesian state estimation. IEEE Proceedings F: Radar and Signal Processing 140: 107-113. – reference: van der Vaart AW, Wellner JA. 1996. Weak Convergence and Empirical Processes, Springer: New York. – reference: Judd KL. 1998. Numerical Methods in Economics, MIT Press: Cambridge, MA. – reference: Pitt MK, Shephard N. 1999. Filtering via simulation: auxiliary particle filters. Journal of the American Statistical Association 94: 590-591. – reference: A Doucet, N de Freitas, and N Gordon (eds). 2001. Sequential Monte Carlo Methods in Practice Springer: New York. – reference: Creal D. 2012. A survey of sequential Monte Carlo methods for economics and finance. Econometric Reviews 31: 245-296. – reference: Timmins C. 2002. Measuring the dynamic efficiency costs of regulators preferences: municipal water utilities in the arid West. Econometrica 70: 603-629. – reference: Arcidiacono P, Miller RA. 2011. Conditional choice probability estimation of dynamic discrete choice models with unobserved heterogeneity. Econometrica 79: 1823-1867. – reference: Stinebrickner TR. 2000. Serially correlated variables in dynamic, discrete choice models. Journal of Applied Econometrics 15: 595-624. – reference: Kalman RE. 1960. A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering 82: 35-45. – reference: Ryan S. 2012. The costs of environmental regulation in a concentrated industry. Econometrica 80: 1019-1061. – reference: Aguirregabiria V, Mira P. 2010. Dynamic discrete choice structural models: a survey. Journal of Econometrics 156: 38-67. – reference: Hotz VJ, Miller RA. 1993. Conditional choice probabilities and the estimation of dynamic models. Review of Economic Studies 60: 497-529. – reference: Norets A. 2010. Continuity and differentiability of expected value functions in dynamic discrete choice models. Quantitative Economics 1: 305-322. – reference: Rust J. 1987. Optimal replacement of GMC bus engines: an empirical model of Harold Zurcher. Econometrica 55: 999-1013. – reference: Norets A. 2009b. Inference in dynamic discrete choice models with serially correlated unobserved state variables. Econometrica 77: 1665-1682. – reference: Imai S, Jain N, Ching A. 2009. Bayesian estimation of dynamic discrete choice models. Econometrica 77: 1865-1899. – reference: Liu J. 2001. Monte Carlo Strategies in Scientific Computing, Springer: New York. – reference: Pakes A, Pollard D. 1989. Simulation and the asymptotics of optimization estimators. Econometrica 57: 1027-1057. – reference: Heckman JJ. 1979. Sample selection bias as a specification error. Econometrica 47: 153-161. – reference: Norets A. 2012. Estimation of dynamic discrete choice models using artificial neural network approximations. Econometric Reviews 31: 84-106. – reference: Hu Y, Shum M. 2013. Identifying dynamic games with serially-correlated unobservables. In Advances in Econometrics 31: 97-113. – reference: Del Moral P, Ledoux M. 2000. Convergence of empirical processes for interacting particle systems with applications to nonlinear filtering. Journal of Theoretical Probability 13: 225-257. – reference: Flury T, Shephard N. 2011. Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models. Econometric Theory 27: 933-956. – reference: Su CL, Judd KL.2012. Constrained optimization approaches to estimation of structural models. Econometrica 80: 2213-2230. – reference: Keane M, Wolpin KI.. The solution and estimation of discrete choice dynamic programming models by simulation and interpolation: Monte Carlo evidence. Review of Economics and Statistics 76 1994: 648-672. – reference: Eckstein Z, Wolpin KI. 1989. The specification and estimation of dynamic stochastic discrete choice models: a survey. Journal of Human Resources 24: 562-598. – reference: Fernández-Villaverde J, Rubio-Ramírez JF. 2007. Estimating macroeconomic models: a likelihood approach. Review of Economic Studies 74: 1059-1087. – reference: Aguirregabiria V, Mira P. 2007. Sequential estimation of dynamic discrete games. Econometrica 75: 1-53. – reference: Aguirregabiria V, Mira P. 2002. Swapping the nested fixed point algorithm: a class of estimators for discrete Markov decision models. Econometrica 70: 1519-1543. – reference: Hu Y, Shum M. 2012. Nonparametric identification of dynamic models with unobserved state variables. Journal of Econometrics 171: 32-44. – reference: Liu JS, Chen R. 1998. Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association 93: 1032-1044. – reference: Nolan D, Pollard D. 1987. U-processes: rates of convergence. Annals of Statistics 15: 780-799. – reference: Bajari P, Benkard CL, Levin J. 2007. Estimating dynamic models of imperfect competition. Econometrica 75: 1331-1370. – volume: 140 start-page: 107 year: 1993 end-page: 113 article-title: Novel approach to nonlinear/non‐gaussian Bayesian state estimation publication-title: IEEE Proceedings F: Radar and Signal Processing – year: 2005 – volume: 171 start-page: 32 year: 2012 end-page: 44 article-title: Nonparametric identification of dynamic models with unobserved state variables publication-title: Journal of Econometrics – volume: 70 start-page: 603 year: 2002 end-page: 629 article-title: Measuring the dynamic efficiency costs of regulators preferences: municipal water utilities in the arid West publication-title: Econometrica – volume: 75 start-page: 1 year: 2007 end-page: 53 article-title: Sequential estimation of dynamic discrete games publication-title: Econometrica – year: 2001 – volume: 15 start-page: 780 year: 1987 end-page: 799 article-title: U‐processes: rates of convergence publication-title: Annals of Statistics – volume: 79 start-page: 1823 year: 2011 end-page: 1867 article-title: Conditional choice probability estimation of dynamic discrete choice models with unobserved heterogeneity publication-title: Econometrica – volume: 57 start-page: 1027 year: 1989 end-page: 1057 article-title: Simulation and the asymptotics of optimization estimators publication-title: Econometrica – volume: 82 start-page: 35 year: 1960 end-page: 45 article-title: A new approach to linear filtering and prediction problems publication-title: Transactions of the ASME—Journal of Basic Engineering – volume: 5 start-page: 531 year: 2014 end-page: 554 article-title: Nonparametric identification of dynamic decision processes with discrete and continuous choices publication-title: Quantitative Economics – volume: 31 start-page: 97 year: 2013 end-page: 113 article-title: Identifying dynamic games with serially‐correlated unobservables publication-title: In Advances in Econometrics – start-page: 179 year: 1981 end-page: 195 – volume: 76 start-page: 648 year: 1994 end-page: 672 article-title: The solution and estimation of discrete choice dynamic programming models by simulation and interpolation: Monte Carlo evidence publication-title: Review of Economics and Statistics – volume: 1 start-page: 305 year: 2010 end-page: 322 article-title: Continuity and differentiability of expected value functions in dynamic discrete choice models publication-title: Quantitative Economics – volume: 80 start-page: 2213 year: 2012 end-page: 2230 article-title: Constrained optimization approaches to estimation of structural models publication-title: Econometrica – start-page: 171 year: 1994 end-page: 274 – year: 2014 – start-page: 4171 year: 2007 end-page: 4276 – year: 1998 – volume: 31 start-page: 245 year: 2012 end-page: 296 article-title: A survey of sequential Monte Carlo methods for economics and finance publication-title: Econometric Reviews – volume: 27 start-page: 933 year: 2011 end-page: 956 article-title: Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models publication-title: Econometric Theory – volume: 94 start-page: 590 year: 1999 end-page: 591 article-title: Filtering via simulation: auxiliary particle filters publication-title: Journal of the American Statistical Association – volume: 30 start-page: 774 year: 2012 end-page: 798 article-title: Sequential Monte Carlo samplers: error bounds and insensitivity to initial conditions publication-title: Stochastic Analysis and Applications – volume: 75 start-page: 1331 year: 2007 end-page: 1370 article-title: Estimating dynamic models of imperfect competition publication-title: Econometrica – volume: 15 start-page: 595 year: 2000 end-page: 624 article-title: Serially correlated variables in dynamic, discrete choice models publication-title: Journal of Applied Econometrics – year: 2015 – start-page: 2111 year: 1994 end-page: 2245 – start-page: 937 year: 1994 end-page: 976 – volume: 60 start-page: 497 year: 1993 end-page: 529 article-title: Conditional choice probabilities and the estimation of dynamic models publication-title: Review of Economic Studies – volume: 74 start-page: 1059 year: 2007 end-page: 1087 article-title: Estimating macroeconomic models: a likelihood approach publication-title: Review of Economic Studies – volume: 55 start-page: 999 year: 1987 end-page: 1013 article-title: Optimal replacement of GMC bus engines: an empirical model of Harold Zurcher publication-title: Econometrica – volume: 77 start-page: 1865 year: 2009 end-page: 1899 article-title: Bayesian estimation of dynamic discrete choice models publication-title: Econometrica – year: 1996 – volume: 13 start-page: 225 year: 2000 end-page: 257 article-title: Convergence of empirical processes for interacting particle systems with applications to nonlinear filtering publication-title: Journal of Theoretical Probability – start-page: 3081 year: 1994 end-page: 3143 – start-page: 5549 year: 2007 end-page: 5632 – year: 2010 – volume: 93 start-page: 1032 year: 1998 end-page: 1044 article-title: Sequential Monte Carlo methods for dynamic systems publication-title: Journal of the American Statistical Association – volume: 70 start-page: 1519 year: 2002 end-page: 1543 article-title: Swapping the nested fixed point algorithm: a class of estimators for discrete Markov decision models publication-title: Econometrica – volume: 77 start-page: 1665 year: 2009b end-page: 1682 article-title: Inference in dynamic discrete choice models with serially correlated unobserved state variables publication-title: Econometrica – volume: 24 start-page: 562 year: 1989 end-page: 598 article-title: The specification and estimation of dynamic stochastic discrete choice models: a survey publication-title: Journal of Human Resources – volume: 54 start-page: 755 year: 1986 end-page: 784 article-title: Patents as options: some estimates of the value of holding European patent stocks publication-title: Econometrica – volume: 47 start-page: 153 year: 1979 end-page: 161 article-title: Sample selection bias as a specification error publication-title: Econometrica – year: 2009a – volume: 156 start-page: 38 year: 2010 end-page: 67 article-title: Dynamic discrete choice structural models: a survey publication-title: Journal of Econometrics – volume: 31 start-page: 84 year: 2012 end-page: 106 article-title: Estimation of dynamic discrete choice models using artificial neural network approximations publication-title: Econometric Reviews – start-page: 109 year: 2001 end-page: 173 – volume: 80 start-page: 1019 year: 2012 end-page: 1061 article-title: The costs of environmental regulation in a concentrated industry publication-title: Econometrica – ident: e_1_2_11_17_1 doi: 10.1111/j.1467-937X.2007.00437.x – ident: e_1_2_11_28_1 doi: 10.3982/ECTA5658 – ident: e_1_2_11_2_1 doi: 10.1016/S1573-4412(07)06063-1 – ident: e_1_2_11_16_1 – ident: e_1_2_11_51_1 doi: 10.1111/1468-0262.00297 – ident: e_1_2_11_11_1 doi: 10.1016/S1573-4412(07)06076-X – ident: e_1_2_11_27_1 doi: 10.1108/S0731-9053(2013)0000032003 – ident: e_1_2_11_42_1 doi: 10.1017/CCOL0521444608.005 – ident: e_1_2_11_25_1 doi: 10.2307/2298122 – ident: e_1_2_11_6_1 doi: 10.3982/ECTA7743 – ident: e_1_2_11_48_1 doi: 10.2139/ssrn.1654338 – ident: e_1_2_11_44_1 doi: 10.1080/01621459.1999.10474153 – ident: e_1_2_11_15_1 doi: 10.2307/145996 – ident: e_1_2_11_21_1 doi: 10.1049/ip-f-2.1993.0015 – ident: e_1_2_11_36_1 doi: 10.1214/aos/1176350374 – ident: e_1_2_11_43_1 doi: 10.2307/1913622 – ident: e_1_2_11_52_1 doi: 10.1007/978-1-4757-2545-2 – ident: e_1_2_11_9_1 – ident: e_1_2_11_31_1 doi: 10.2307/2109768 – ident: e_1_2_11_30_1 doi: 10.1115/1.3662552 – ident: e_1_2_11_14_1 doi: 10.1007/978-1-4757-3437-9 – ident: e_1_2_11_5_1 doi: 10.1016/j.jeconom.2009.09.007 – ident: e_1_2_11_8_1 doi: 10.3982/QE117 – ident: e_1_2_11_13_1 doi: 10.1023/A:1007743111861 – ident: e_1_2_11_45_1 doi: 10.2307/1911259 – ident: e_1_2_11_7_1 doi: 10.1111/j.1468-0262.2007.00796.x – start-page: 3081 volume-title: Handbook of Econometrics year: 1994 ident: e_1_2_11_46_1 doi: 10.1016/S1573-4412(05)80020-0 – start-page: 179 volume-title: Structural Analysis of Discrete Data with Econometric Applications year: 1981 ident: e_1_2_11_24_1 – ident: e_1_2_11_19_1 – ident: e_1_2_11_39_1 doi: 10.3982/QE41 – ident: e_1_2_11_23_1 doi: 10.2307/1912352 – ident: e_1_2_11_3_1 doi: 10.1111/1468-0262.00340 – ident: e_1_2_11_34_1 doi: 10.1080/01621459.1998.10473765 – ident: e_1_2_11_4_1 doi: 10.1111/j.1468-0262.2007.00731.x – ident: e_1_2_11_53_1 doi: 10.1080/07362994.2012.684323 – volume-title: Numerical Methods in Economics year: 1998 ident: e_1_2_11_29_1 – ident: e_1_2_11_18_1 doi: 10.1017/S0266466610000599 – ident: e_1_2_11_40_1 doi: 10.1080/07474938.2011.607089 – ident: e_1_2_11_35_1 doi: 10.1016/S1573-4412(05)80005-4 – ident: e_1_2_11_37_1 – ident: e_1_2_11_12_1 doi: 10.1080/07474938.2011.607333 – ident: e_1_2_11_20_1 – ident: e_1_2_11_26_1 doi: 10.1016/j.jeconom.2012.05.023 – ident: e_1_2_11_50_1 doi: 10.3982/ECTA7925 – start-page: 937 volume-title: Handbook of Econometrics year: 1994 ident: e_1_2_11_22_1 – ident: e_1_2_11_49_1 doi: 10.1002/jae.578 – ident: e_1_2_11_10_1 doi: 10.1007/0-387-28982-8 – ident: e_1_2_11_47_1 doi: 10.3982/ECTA6750 – volume-title: Monte Carlo Strategies in Scientific Computing year: 2001 ident: e_1_2_11_33_1 – ident: e_1_2_11_41_1 doi: 10.2307/1912835 – start-page: 109 volume-title: Complex Stochastic Systems year: 2001 ident: e_1_2_11_32_1 – ident: e_1_2_11_38_1 doi: 10.3982/ECTA7292 |
SSID | ssj0006007 |
Score | 2.258818 |
Snippet | This paper develops estimators for dynamic microeconomic models with serially correlated unobserved state variables using sequential Monte Carlo methods to... Summary This paper develops estimators for dynamic microeconomic models with serially correlated unobserved state variables using sequential Monte Carlo... Summary This paper develops estimators for dynamic microeconomic models with serially correlated unobserved state variables using sequential Monte Carlo... |
SourceID | proquest econis crossref wiley jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 773 |
SubjectTerms | Economic models Microeconomics Monte Carlo simulation |
Title | Sequential Monte Carlo Methods for Estimating Dynamic Microeconomic Models |
URI | https://api.istex.fr/ark:/67375/WNG-RXVN94QT-D/fulltext.pdf https://www.jstor.org/stable/26609648 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjae.2470 http://www.econis.eu/PPNSET?PPN=887346774 https://www.proquest.com/docview/1810527562 https://www.proquest.com/docview/1835025712 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-kCPrid2m0lRWkPuWa7GfyWNqr5eAOrK0e-LBsNpuiPXJyuQPxr-9MNkk_UBCf8pBJSHZ3Zn6T_PY3hLxXkCR85XWcM8uhQJEuzkpRxJBpyqoU0mctiWY6U6cXYjKX845ViXthgj7E8MENPaON1-jgtmgObkRDf1g_YkJjuY5ULcRDZzfKUSi7HgAkjzWTrNedTdhBf-GdTPQQy8_vDUBUHN1fPTvxDu68jV7b9HPylHzrHzywTq5Gm3Uxcr_vaTr-35s9I086VEoPwzJ6Th74-gV51G9abl6SyeeWcg3hYEGnKGhFj-xqsaTTtgF1QwH60jFEC8S_9SU9Dn3u6RTpfr67DcW-a4vmFbk4GZ8fncZdG4bYCS2SOLO2zGDOFICzQspCJYI7gDFMlrrMnCuVhTQPxW7uecoxAFR5ybVLHdRSXFm-TbbqZe13CE1z6_LKlsK5XLDEFU45laeyck4V2iYR-dBPiXGdRjm2yliYoK7MDIyNwbGJyLvB8mfQ5fiDzU6Y1cECIiqHzKBFRPbbeR7O2NUVUty0NF9nH83Z_MssF5_OzXFEttuFMBgCoIGqT2QR2e1XhuncvjEAlxKJgvoMnm84DQ6Lf2Fs7ZcbtOESgKZOwWa_XQZ_fQEzORzj8fW_Gr4hjwHQqUBQ3CVb69XG7wFoWhdvW_e4Bn1wD4c |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VBalceFd1KbBIqJyc2t6XLU5VkxJCHYmSQg5Iq_V6jWgjB8WJhPj1zPhVikBCnHzYsbWvmflmPfsNIS8lOAlXOOUnkWEQoAjrxznPfPA0eZFz4eI6iSadyvEFn8zFfIu87u7CNPwQ_YEbakZtr1HB8UD66Jo19NK4QcQVxOu3sKA3EucPz6-5o5B4vYGQzFeRiDrm2SA66t684YtuYwD6tQKQivP7vctPvIE8f8WvtQM6vUc-d11v8k6uBpt1NrA_fmN1_M-x3Sd3W2BKj5ud9IBsufIh2enuLVePyORDnXUNFmFBU-S0oidmtVjStK5BXVFAv3QEBgMhcPmFDptS9zTFjD_XfoZi6bVF9ZhcnI5mJ2O_rcTgW6544MfG5DEsmwR8lgmRyYAzC0gmErnKY2tzacDTQ7ybOBYytAFFkjNlQwvhFJOG7ZLtclm6PULDxNikMDm3NuFRYDMrrUxCUVgrM2UCj7zq1kTblqYcq2UsdEOwHGmYG41z45EXveS3hprjDzJ7zbL2EmBUGTgHxT1yWC9032JWV5jlpoT-NH2jz-cfpwl_P9NDj-zWO6EXBEwDgR-PPXLQbQ3dan6lATEFAjn1I-hf3ww6iz9iTOmWG5RhArCmCkHmsN4Hfx2AnhyP8Ln_r4LPyc54lp7ps7fTd0_IHcB3sslXPCDb69XGPQUMtc6e1bryE24cE6M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQQMAL39MCA4yExlO6JP5KHqe1ZRRawdig0h4sx3YQrEqnppUQfz13-RpDICGe8uBL5Ph8d79Lzr8j5KWEIOELr8IsMQwSFGHD1PE8hEjjCseFT-simulMHp3yyVzM26pKPAvT8EP0H9zQMmp_jQZ-4Yr9S9LQb8YPEq4gXb_OZZRh24bh8SV1FPKuNwiShSoRSUc8GyX73Z1XQtENzD-_VoBRcXm_d-WJV4Dnr_C1jj_ju-Ssm3lTdnI-2Kzzgf3xG6nj_73aPXKnhaX0oNlH98k1Xz4gt7pTy9VDMvlY11yDP1jQKTJa0UOzWizptO5AXVHAvnQE7gIBcPmFDptG93SK9X6-fQzFxmuL6hE5HY9ODo_Ctg9DaLniUZga41JQmgR0lguRy4gzCzgmEU651FonDcR5yHYzz2KGHqDIHFM2tpBMMWnYNtkql6XfITTOjM0K47i1GU8im1tpZRaLwlqZKxMF5FWnEm1bknLslbHQDb1yomFtNK5NQF70khcNMccfZHYarfYS4FIZhAbFA7JX67kfMatzrHFTQn-evdbH80-zjH840cOAbNcboRcERANpH08DstvtDN3afaUBL0UCGfUTmF8_DBaLv2FM6ZcblGECkKaKQWav3gZ_fQE9ORjh9fG_Cj4nN98Px_rdm9nbJ-Q2gDvZFCvukq31auOfAoBa589qS_kJIngSUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+Monte+Carlo+Methods+for+Estimating+Dynamic+Microeconomic+Models&rft.jtitle=Journal+of+applied+econometrics+%28Chichester%2C+England%29&rft.au=Blevins%2C+Jason+R&rft.date=2016-08-01&rft.issn=0883-7252&rft.volume=31&rft.issue=5&rft.spage=773&rft.epage=804&rft_id=info:doi/10.1002%2Fjae.2470&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-7252&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-7252&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-7252&client=summon |