Sequential Monte Carlo Methods for Estimating Dynamic Microeconomic Models

This paper develops estimators for dynamic microeconomic models with serially correlated unobserved state variables using sequential Monte Carlo methods to estimate the parameters and the distribution of the unobservables. If persistent unobservables are ignored, the estimates can be subject to a dy...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied econometrics (Chichester, England) Vol. 31; no. 5; pp. 773 - 804
Main Author Blevins, Jason R.
Format Journal Article
LanguageEnglish
Published Chichester Blackwell Publishing Ltd 01.08.2016
Wiley (Variant)
Wiley-Blackwell
Wiley Periodicals Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper develops estimators for dynamic microeconomic models with serially correlated unobserved state variables using sequential Monte Carlo methods to estimate the parameters and the distribution of the unobservables. If persistent unobservables are ignored, the estimates can be subject to a dynamic form of sample selection bias. We focus on single-agent dynamic discrete-choice models and dynamic games of incomplete information. We propose a full-solution maximum likelihood procedure and a two-step method and use them to estimate an extended version of the capital replacement model of Rust with the original data and in a Monte Carlo study.
Bibliography:ArticleID:JAE2470
ark:/67375/WNG-RXVN94QT-D
istex:D3BB427F894098961ABD111504BE58B87387449E
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0883-7252
1099-1255
DOI:10.1002/jae.2470