In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish

The function of macrophages in vitro is linked to their metabolic rewiring. However, macrophage metabolism remains poorly characterized in situ. Here, we used two-photon intensity and lifetime imaging of autofluorescent metabolic coenzymes, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 11
Main Authors Miskolci, Veronika, Tweed, Kelsey E, Lasarev, Michael R, Britt, Emily C, Walsh, Alex J, Zimmerman, Landon J, McDougal, Courtney E, Cronan, Mark R, Fan, Jing, Sauer, John-Demian, Skala, Melissa C, Huttenlocher, Anna
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 24.02.2022
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The function of macrophages in vitro is linked to their metabolic rewiring. However, macrophage metabolism remains poorly characterized in situ. Here, we used two-photon intensity and lifetime imaging of autofluorescent metabolic coenzymes, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD), to assess the metabolism of macrophages in the wound microenvironment. Inhibiting glycolysis reduced NAD(P)H mean lifetime and made the intracellular redox state of macrophages more oxidized, as indicated by reduced optical redox ratio. We found that TNFα+ macrophages had lower NAD(P)H mean lifetime and were more oxidized compared to TNFα- macrophages. Both infection and thermal injury induced a macrophage population with a more oxidized redox state in wounded tissues. Kinetic analysis detected temporal changes in the optical redox ratio during tissue repair, revealing a shift toward a more reduced redox state over time. Metformin reduced TNFα+ wound macrophages, made intracellular redox state more reduced and improved tissue repair. By contrast, depletion of STAT6 increased TNFα+ wound macrophages, made redox state more oxidized and impaired regeneration. Our findings suggest that autofluorescence of NAD(P)H and FAD is sensitive to dynamic changes in intracellular metabolism in tissues and can be used to probe the temporal and spatial regulation of macrophage metabolism during tissue damage and repair.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
In Vivo Cell Biology of Infection Unit, Max Planck Institute for Infection Biology, Berlin, Germany.
Department of Biomedical Engineering, Texas A&M University, College Station, United States.
ISSN:2050-084X
2050-084X
DOI:10.7554/ELIFE.66080