Water quality prediction in sea cucumber farming based on a GRU neural network optimized by an improved whale optimization algorithm

Sea cucumber farming is an important part of China’s aquaculture industry, and sea cucumbers have higher requirements for aquaculture water quality. This article proposes a sea cucumber aquaculture water quality prediction model that uses an improved whale optimization algorithm to optimize the gate...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 8; p. e1000
Main Authors Yang, Huanhai, Liu, Shue
Format Journal Article
LanguageEnglish
Published San Diego PeerJ. Ltd 31.05.2022
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sea cucumber farming is an important part of China’s aquaculture industry, and sea cucumbers have higher requirements for aquaculture water quality. This article proposes a sea cucumber aquaculture water quality prediction model that uses an improved whale optimization algorithm to optimize the gated recurrent unit neural network(IWOA-GRU), which provides a reference for the water quality control in the sea cucumber growth environment. This model first applies variational mode decomposition (VMD) and the wavelet threshold joint denoising method to remove mixed noise in water quality time series. Then, by optimizing the convergence factor, the convergence speed and global optimization ability of the whale optimization algorithm are strengthened. Finally, the improved whale optimization algorithm is used to construct a GRU prediction model based on optimal network weights and thresholds to predict sea cucumber farming water quality. The model was trained and tested using three water quality indices (dissolved oxygen, temperature and salinity) of sea cucumber culture waters in Shandong Peninsula, China, and compared with prediction models such as support vector regression (SVR), random forest (RF), convolutional neural network (CNN), recurrent neural network (RNN), and long short-term memory neural network (LSTM). Experimental results show that the prediction accuracy and generalization performance of this model are better than those of the other compared models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2376-5992
2376-5992
DOI:10.7717/peerj-cs.1000