Effect of processing on the crystalline orientation, morphology, and mechanical properties of polypropylene cast films and microporous membrane formation

Cast films of a high molecular weight linear polypropylene (L-PP) were prepared by extrusion followed by stretching using a chill roll. An air knife was employed to supply air to the film surface right at the exit of the die. The effects of air cooling conditions, chill roll temperature, and draw ra...

Full description

Saved in:
Bibliographic Details
Published inPolymer (Guilford) Vol. 50; no. 17; pp. 4228 - 4240
Main Authors Tabatabaei, Seyed H., Carreau, Pierre J., Ajji, Abdellah
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 12.08.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cast films of a high molecular weight linear polypropylene (L-PP) were prepared by extrusion followed by stretching using a chill roll. An air knife was employed to supply air to the film surface right at the exit of the die. The effects of air cooling conditions, chill roll temperature, and draw ratio on the crystalline orientation, morphology, mechanical and tear properties of the PP cast films were investigated. The crystallinity and crystal size distribution of the films were studied using differential scanning calorimetry (DSC). It was found that air blowing on the films contributed significantly to the uniformity of the lamellar structure. The orientation of crystalline and amorphous phases was measured using wide angle X-ray diffraction (WAXD) and Fourier transform infrared (FTIR). The amount of lamellae formation and long period spacing were obtained via small angle X-ray scattering (SAXS). The results showed that air cooling and the cast roll temperature have a crucial role on the orientation and amount of lamellae formation of the cast films, which was also confirmed from scanning electron microscopy (SEM) images of the films. Tensile properties and tear resistance of the cast films in machine and transverse directions (MD and TD, respectively) were evaluated. Significant increases of the Young modulus, yield stress, tensile strength, and tensile toughness along MD and drastic decreases of elongation at break along TD were observed for films subjected to air blowing. Morphological pictograms are proposed to represent the molecular structure of the films obtained without and upon applying air cooling for different chill roll temperatures. Finally, microporous membranes were prepared from annealed and stretched films to illustrate the effect of the PP cast film microstructure on the morphology and permeability of membranes. The observations of SEM surface images and water vapor transmission rate of the membranes showed higher pore density, uniform pore size, and superior permeability for the ones obtained from the precursor films prepared under controlled air cooling. [Display omitted]
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2009.06.071