Oral vaccination of animals with antigens encapsulated in alginate microspheres

Most infectious diseases begin at a mucosal surface. Prevention of infection must therefore consider ways to enhance local immunity to prevent the attachment and invasion of microbes. Despite this understanding, most vaccines depend on parenterally administered vaccines that induce a circulating imm...

Full description

Saved in:
Bibliographic Details
Published inVaccine Vol. 17; no. 13; pp. 1804 - 1811
Main Authors Bowersock, T.L, Hogenesch, H, Suckow, M, Guimond, P, Martin, S, Borie, D, Torregrosa, S, Park, H, Park, K
Format Journal Article Conference Proceeding
LanguageEnglish
Published Oxford Elsevier Ltd 26.03.1999
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Most infectious diseases begin at a mucosal surface. Prevention of infection must therefore consider ways to enhance local immunity to prevent the attachment and invasion of microbes. Despite this understanding, most vaccines depend on parenterally administered vaccines that induce a circulating immune response that often does not cross to mucosal sites. Administration of vaccines to mucosal sites induces local immunity. To be effective requires that antigen be administered often. This is not always practical depending on the site where protection is needed, nor comfortable to the patient. Not all mucosal sites have inductive lymphoid tissue present as well. Oral administration is easy to do, is well accepted by humans and animals and targets the largest inductive lymphoid tissue in the body in the intestine. Oral administration of antigen requires protection of antigen from the enzymes and pH of the stomach. Polymeric delivery systems are under investigation to deliver vaccines to the intestine while protecting them from adverse conditions that could adversely affect the antigens. They also can enhance delivery of antigen specifically to the inductive lymphoid tissue. Sodium alginate is a readily available, inexpensive polymer that can be used to encapsulate a wide variety of antigens under mild conditions. Orally administered alginate microspheres containing antigen have successfully induced immunity in mice to enteric (rotavirus) pathogens and in the respiratory tract in cattle with a model antigen (ovalbumin). This delivery system offers a safe, effective means of orally vaccinating large numbers of animals (and perhaps humans) to a variety of infectious agents.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0264-410X
1873-2518
DOI:10.1016/S0264-410X(98)00437-X