Titin determines the Frank-Starling relation in early diastole

Titin, a giant protein spanning half the sarcomere, is responsible for passive and restoring forces in cardiac myofilaments during sarcomere elongation and compression, respectively. In addition, titin has been implicated in the length-dependent activation that occurs in the stretched sarcomere, dur...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of general physiology Vol. 121; no. 2; pp. 97 - 110
Main Authors Helmes, Michiel, Lim, Chee Chew, Liao, Ronglih, Bharti, Ajit, Cui, Lei, Sawyer, Douglas B
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 01.02.2003
The Rockefeller University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Titin, a giant protein spanning half the sarcomere, is responsible for passive and restoring forces in cardiac myofilaments during sarcomere elongation and compression, respectively. In addition, titin has been implicated in the length-dependent activation that occurs in the stretched sarcomere, during the transition from diastole to systole. The purpose of this study was to investigate the role of titin in the length-dependent deactivation that occurs during early diastole, when the myocyte is shortened below slack length. We developed a novel in vitro assay to assess myocyte restoring force (RF) by measuring the velocity of recoil in Triton-permeabilized, unloaded rat cardiomyocytes after rigor-induced sarcomere length (SL) contractions. We compared rigor-induced SL shortening to that following calcium-induced (pCa) contractions. The RF-SL relationship was linearly correlated, and the SL-pCa curve displayed a characteristic sigmoidal curve. The role of titin was defined by treating myocytes with a low concentration of trypsin, which we show selectively degrades titin using mass spectroscopic analysis. Trypsin treatment reduced myocyte RF as shown by a decrease in the slope of the RF-SL relationship, and this was accompanied by a downward and leftward shift of the SL-pCa curve, indicative of sensitization of the myofilaments to calcium. In addition, trypsin digestion did not alter the relationship between SL and interfilament spacing (assessed by cell width) after calcium activation. These data suggest that as the sarcomere shortens below slack length, titin-based restoring forces act to desensitize the myofilaments. Furthermore, in contrast to length-dependent activation at long SLs, length-dependent deactivation does not depend on interfilament spacing. This study demonstrates for the first time the importance of titin-based restoring force in length-dependent deactivation during the early phase of diastole.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Address correspondence to Douglas B. Sawyer, Cardiovascular Division, Department of Medicine, Boston University Medical Center X-704, 650 Albany Street, Boston, MA 02118. Fax: (617) 638-8081; E-mail: douglas.sawyer@bmc.org
M.H. Helmes and C.C. Lim contributed equally to this work.
ISSN:0022-1295
1540-7748
DOI:10.1085/jgp.20028652