Activation of HMG-CoA reductase by microsomal phosphatase

HMG-CoA reductase activity can be modulated by a reversible phosphorylation-dephosphorylation with the phosphorylated form of the enzyme being inactive and the dephosphorylated form, active. Phosphatases from diverse sources, including cytosol, have been shown to dephosphorylate and activate HMG-CoA...

Full description

Saved in:
Bibliographic Details
Published inJournal of lipid research Vol. 24; no. 3; pp. 290 - 296
Main Authors Feingold, K R, Wiley, M H, Moser, A H, Lear, S R, Siperstein, M D
Format Journal Article
LanguageEnglish
Published United States Elsevier 01.03.1983
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:HMG-CoA reductase activity can be modulated by a reversible phosphorylation-dephosphorylation with the phosphorylated form of the enzyme being inactive and the dephosphorylated form, active. Phosphatases from diverse sources, including cytosol, have been shown to dephosphorylate and activate HMG-CoA reductase. The present study demonstrates phosphatase activity capable of activating HMG-CoA reductase that is associated with purified microsomes. The incubation of microsomes at 37 degrees C for 40 min results in a twofold stimulation of HMG-CoA reductase activity, and this stimulation is blocked by sodium fluoride or phosphate. The ability of microsomes to increase HMG-CoA reductase activity occurs regardless of whether microsomes are prepared by ultracentrifugation or calcium precipitation. Additionally, phosphatases capable of activating HMG-CoA reductase are present in both the smooth and rough endoplasmic reticulum. Freeze-thawing does not prevent microsomes from activating HMG-CoA reductase but preincubation results in a significant decrease in the ability of microsomes to increase HMG-CoA reductase activity. Thus, the present study demonstrates that purified liver microsomes contain phosphatase activity capable of activating HMG-CoA reductase.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2275
1539-7262
DOI:10.1016/S0022-2275(20)37997-9