Multiple Rh Messenger RNA Isoforms Are Produced by Alternative Splicing
Three Rh-related cDNAs have been isolated from a human bone marrow cDNA library and by polymerase chain reaction (PCR) amplification of human bone marrow and erythroblast mRNAs. They potentially encode a family of Rh protein isoforms that exhibit several unexpected structural properties as compared...
Saved in:
Published in | Blood Vol. 80; no. 4; pp. 1074 - 1078 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.08.1992
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Three Rh-related cDNAs have been isolated from a human bone marrow cDNA library and by polymerase chain reaction (PCR) amplification of human bone marrow and erythroblast mRNAs. They potentially encode a family of Rh protein isoforms that exhibit several unexpected structural properties as compared with the Rh polypeptide encoded by the cDNA clone identified previously. These modifications include several peptide deletions, the predicted alteration of Rh protein topology within the cell membrane, variations in the number and surface exposition of cysteine residues, and the generation of new C-terminal polypeptide segments caused by frameshift mutations. The four Rh mRNAs now described correspond to different splicing isoforms transcribed from the same Rh gene, and all exist in the same cell lineage (erythroid). Morever, PCR experiments indicated that at least three of these RNA species exist in reticulocytes from donors with different commonly expressed Rh phenotypes. Although the translated proteins have not yet been characterized, these results suggest that the two genes at the RH locus may direct the synthesis of several protein species possibly corresponding to different Rh antigenic variants. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.V80.4.1074.1074 |