Flow visualization through particle image velocimetry in realistic model of rhesus monkey’s upper airway
•Flow in a realistic rhesus monkey upper airway model is the subject of this study.•We conducted PIV to investigate the flow pattern in both oral and nasal inhalations.•Vortex flow structures occurred in the nasal vestibule by sudden expansion of vestibule geometry.•The flow profile is found to be w...
Saved in:
Published in | Respiratory physiology & neurobiology Vol. 251; pp. 16 - 27 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1569-9048 1878-1519 1878-1519 |
DOI | 10.1016/j.resp.2018.02.007 |
Cover
Loading…
Abstract | •Flow in a realistic rhesus monkey upper airway model is the subject of this study.•We conducted PIV to investigate the flow pattern in both oral and nasal inhalations.•Vortex flow structures occurred in the nasal vestibule by sudden expansion of vestibule geometry.•The flow profile is found to be well developed in the trachea region for cases involving oral inhalation at 10 and 20 L/min.•The results contribute to understand flow pattern in the complex monkey airway model.
Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle image velocimetry (PIV) is an effective in vitro technique that reveals detailed inhalation flow patterns, thereby assisting analyses of inhalation exposure to various substances. A realistic model of a rhesus-monkey upper airway was developed to investigate flow patterns in its oral and nasal cavities through PIV experiments performed under steady-state constant inhalation conditions at various flow rates—4, 10, and 20 L/min. Flow rate of the fluid passing through the inlet into the trachea was measured to obtain characteristic flow mechanisms, and flow phenomena in the model were confirmed via characterized flow fields. It was observed that increase in flow rate leads to constant velocity profiles in upper and lower trachea regions. It is expected that the results of this study would contribute to future validation of studies aimed at developing in silico models, especially those involving computational fluid dynamic (CFD) analysis. |
---|---|
AbstractList | Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle image velocimetry (PIV) is an effective in vitro technique that reveals detailed inhalation flow patterns, thereby assisting analyses of inhalation exposure to various substances. A realistic model of a rhesus-monkey upper airway was developed to investigate flow patterns in its oral and nasal cavities through PIV experiments performed under steady-state constant inhalation conditions at various flow rates-4, 10, and 20 L/min. Flow rate of the fluid passing through the inlet into the trachea was measured to obtain characteristic flow mechanisms, and flow phenomena in the model were confirmed via characterized flow fields. It was observed that increase in flow rate leads to constant velocity profiles in upper and lower trachea regions. It is expected that the results of this study would contribute to future validation of studies aimed at developing in silico models, especially those involving computational fluid dynamic (CFD) analysis.Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle image velocimetry (PIV) is an effective in vitro technique that reveals detailed inhalation flow patterns, thereby assisting analyses of inhalation exposure to various substances. A realistic model of a rhesus-monkey upper airway was developed to investigate flow patterns in its oral and nasal cavities through PIV experiments performed under steady-state constant inhalation conditions at various flow rates-4, 10, and 20 L/min. Flow rate of the fluid passing through the inlet into the trachea was measured to obtain characteristic flow mechanisms, and flow phenomena in the model were confirmed via characterized flow fields. It was observed that increase in flow rate leads to constant velocity profiles in upper and lower trachea regions. It is expected that the results of this study would contribute to future validation of studies aimed at developing in silico models, especially those involving computational fluid dynamic (CFD) analysis. •Flow in a realistic rhesus monkey upper airway model is the subject of this study.•We conducted PIV to investigate the flow pattern in both oral and nasal inhalations.•Vortex flow structures occurred in the nasal vestibule by sudden expansion of vestibule geometry.•The flow profile is found to be well developed in the trachea region for cases involving oral inhalation at 10 and 20 L/min.•The results contribute to understand flow pattern in the complex monkey airway model. Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle image velocimetry (PIV) is an effective in vitro technique that reveals detailed inhalation flow patterns, thereby assisting analyses of inhalation exposure to various substances. A realistic model of a rhesus-monkey upper airway was developed to investigate flow patterns in its oral and nasal cavities through PIV experiments performed under steady-state constant inhalation conditions at various flow rates—4, 10, and 20 L/min. Flow rate of the fluid passing through the inlet into the trachea was measured to obtain characteristic flow mechanisms, and flow phenomena in the model were confirmed via characterized flow fields. It was observed that increase in flow rate leads to constant velocity profiles in upper and lower trachea regions. It is expected that the results of this study would contribute to future validation of studies aimed at developing in silico models, especially those involving computational fluid dynamic (CFD) analysis. Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle image velocimetry (PIV) is an effective in vitro technique that reveals detailed inhalation flow patterns, thereby assisting analyses of inhalation exposure to various substances. A realistic model of a rhesus-monkey upper airway was developed to investigate flow patterns in its oral and nasal cavities through PIV experiments performed under steady-state constant inhalation conditions at various flow rates-4, 10, and 20 L/min. Flow rate of the fluid passing through the inlet into the trachea was measured to obtain characteristic flow mechanisms, and flow phenomena in the model were confirmed via characterized flow fields. It was observed that increase in flow rate leads to constant velocity profiles in upper and lower trachea regions. It is expected that the results of this study would contribute to future validation of studies aimed at developing in silico models, especially those involving computational fluid dynamic (CFD) analysis. |
Author | Phuong, Nguyen Lu Aramaki, Shin-ichiro Ito, Kazuhide Kim, Ji-Woong |
Author_xml | – sequence: 1 givenname: Ji-Woong surname: Kim fullname: Kim, Ji-Woong organization: Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan – sequence: 2 givenname: Nguyen Lu surname: Phuong fullname: Phuong, Nguyen Lu email: nlphuong@kyudai.jp organization: Faculty of Engineering Sciences, Kyushu University, Japan – sequence: 3 givenname: Shin-ichiro surname: Aramaki fullname: Aramaki, Shin-ichiro organization: Nishinippon Institute of Technology, Japan – sequence: 4 givenname: Kazuhide surname: Ito fullname: Ito, Kazuhide organization: Faculty of Engineering Sciences, Kyushu University, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29438809$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbtuFDEUhi2UKPcXoEAuaWawPRfbEQ2KCCBFSkNqy-M5k_XiGU9sz0ZLxWvwejwJXjZQpAjV8ZG-70j-_1N0MPkJEHpNSUkJbd-tywBxLhmhoiSsJIS_QidUcFHQhsqD_G5aWUhSi2N0GuOaEMopr47QMZN1JQSRJ2h97fwj3ti4aGe_62T9hNMq-OV-hWcdkjUOsB31PeANOG_sCClssZ1wgGzEDODR9-CwH3BYQVxi3qdvsP3142fEyzxDwNqGR709R4eDdhEunuYZurv--PXqc3Fz--nL1YebwtS8SoWsCav7rjZD1zaVJB1hDAg1vOHGGFq3fVuD5kPf9KJiAlo5CEGFliz7HW-rM_R2f3cO_mGBmNRoowHn9AR-iYqRfJFWktOMvnlCl26EXs0hfzVs1d98MsD2gAk-xgDDP4QStStBrdWuBLUrQRGmcglZEs8kY9OfaFPQ1r2svt-rkAPaWAgqGguTgd4GMEn13r6sXz7TjbOTNdrlQv4n_waGabi4 |
CitedBy_id | crossref_primary_10_1016_j_resp_2019_103304 crossref_primary_10_1080_10255842_2020_1819256 crossref_primary_10_1016_j_resp_2020_103587 crossref_primary_10_1142_S0219519421500706 crossref_primary_10_1016_j_jaerosci_2022_106099 crossref_primary_10_1080_08958378_2020_1800148 |
Cites_doi | 10.1152/jappl.1993.75.4.1767 10.1098/rsif.2009.0306 10.1080/089583701750127412 10.1093/toxsci/kfj209 10.1007/BF03181864 10.1007/s00348-014-1704-x 10.1006/taap.1997.8350 10.1007/BF00190272 10.1177/1420326X17694475 10.1016/S0041-008X(05)80005-5 10.1016/j.resp.2009.02.014 10.1093/toxsci/kfs168 10.1007/s003480050430 10.1098/rsif.2014.0880 10.1016/j.resp.2008.01.012 10.1080/02786829708965486 10.1016/j.resp.2008.07.027 10.1152/jappl.1993.75.5.2273 10.1007/s00348-003-0636-7 10.1016/j.buildenv.2016.02.020 10.1016/j.resp.2013.09.004 10.1177/1420326X16662111 10.1080/01926230601072343 10.1177/1420326X17694476 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.resp.2018.02.007 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1878-1519 |
EndPage | 27 |
ExternalDocumentID | 29438809 10_1016_j_resp_2018_02_007 S1569904817303701 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29P 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABGSF ABJNI ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGRDE AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OHT OI- OU. OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPCBC SSH SSN SSU SSZ T5K UHS Z5R ZGI ~02 ~G- AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG ZA5 AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c473t-94024db4cfb65390b022e01c757ccc146d64ea7fd5d8328e69f8818a92c47b763 |
IEDL.DBID | .~1 |
ISSN | 1569-9048 1878-1519 |
IngestDate | Thu Sep 04 16:04:28 EDT 2025 Mon Jul 21 06:03:54 EDT 2025 Tue Jul 01 03:30:45 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 Fri Feb 23 02:19:08 EST 2024 Tue Aug 26 16:32:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Particle image velocimetry (PIV) Oral cavity Nasal cavity Rhesus monkey’s upper airway Computational fluid dynamics (CFD) |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-94024db4cfb65390b022e01c757ccc146d64ea7fd5d8328e69f8818a92c47b763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29438809 |
PQID | 2002213971 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2002213971 pubmed_primary_29438809 crossref_primary_10_1016_j_resp_2018_02_007 crossref_citationtrail_10_1016_j_resp_2018_02_007 elsevier_sciencedirect_doi_10_1016_j_resp_2018_02_007 elsevier_clinicalkey_doi_10_1016_j_resp_2018_02_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Respiratory physiology & neurobiology |
PublicationTitleAlternate | Respir Physiol Neurobiol |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Phuong, Yamashita, Yoo, Ito (bib0115) 2016; 100 Hopkins, Kelly, Wexler, Prasad (bib0055) 2000; 29 Hislop, Howard, Fairweather (bib0050) 1984; 138 Martonen, Katz, Musante (bib0095) 2001; 13 Wen, Inthavong, Tu, Wang (bib0140) 2008; 161 Carey, Minard, Trease, Wagner, Garcia, Ballinger, Kimbell, Plopper, Corley, Postlethwait, Harkema (bib0015) 2007; 35 Doorly, Taylor, Schroter (bib0030) 2008; 163 Wang, Inthavong, Wen, Tu, Xue (bib0135) 2009; 166 Keane, Adrian (bib0070) 1992 Heenan, Matida, Pollard, Finlay (bib0045) 2003; 35 Kim, Chung (bib0085) 2009; 12 Bai, Katz (bib0005) 2014; 55 Schreck, Sullivan, Ho, Chang (bib0125) 1993; 75 Ito, Mitsumune, Kuga, Phuong, Tani, Inthavong (bib0065) 2016; 26 Kuga, Ito, Yoo, Chen, Wang, Liao, Fowles, Shusterman, Kumagai (bib0090) 2017 Kelly, Prasad, Wexler (bib0075) 2000 Yoo, Ito (bib0155) 2017 Monticello, Morgan, Everitt, Popp (bib0100) 1989; 134 Yeh, Muggenburg, Harkema (bib0150) 1997; 27 Hahn, Scherer, Mozell (bib0040) 1993; 75 Westerweel, Draad, van der Hoeven, van Oord (bib0145) 1996; 20 Phuong, Ito (bib0110) 2015 Bates, Doorly, Cetto, Calmet, Gambaruto, Tolley, Houzeaux, Schroter (bib0010) 2014; 12 Inthavong, Shang, Tu (bib0060) 2014; 190 Morgan, Kimbell, Monticello, Patra, Fleishman (bib0105) 1991; 110 Day, Berendt (bib0025) 1972 Kepler, Richardson, Morgan, Kimbell (bib0080) 1998; 150 Corley, Kabilan, Kuprat, Carson, Minard, Jacob, Timchalk, Glenny, Pipavath, Cox, Wallis, Larson, Fanucchi, Postlethwait, Einstein (bib0020) 2012; 128 Dorman, Struve, Wong, Dye, Robertson (bib0035) 2006; 92 Scarano, Riethmuller (bib0120) 1999 Taylor, Doorly, Schroter (bib0130) 2010; 7 Hopkins (10.1016/j.resp.2018.02.007_bib0055) 2000; 29 Bai (10.1016/j.resp.2018.02.007_bib0005) 2014; 55 Morgan (10.1016/j.resp.2018.02.007_bib0105) 1991; 110 Kuga (10.1016/j.resp.2018.02.007_bib0090) 2017 Dorman (10.1016/j.resp.2018.02.007_bib0035) 2006; 92 Taylor (10.1016/j.resp.2018.02.007_bib0130) 2010; 7 Day (10.1016/j.resp.2018.02.007_bib0025) 1972 Kelly (10.1016/j.resp.2018.02.007_bib0075) 2000 Wen (10.1016/j.resp.2018.02.007_bib0140) 2008; 161 Monticello (10.1016/j.resp.2018.02.007_bib0100) 1989; 134 Keane (10.1016/j.resp.2018.02.007_bib0070) 1992 Yoo (10.1016/j.resp.2018.02.007_bib0155) 2017 Kim (10.1016/j.resp.2018.02.007_bib0085) 2009; 12 Hislop (10.1016/j.resp.2018.02.007_bib0050) 1984; 138 Schreck (10.1016/j.resp.2018.02.007_bib0125) 1993; 75 Yeh (10.1016/j.resp.2018.02.007_bib0150) 1997; 27 Heenan (10.1016/j.resp.2018.02.007_bib0045) 2003; 35 Phuong (10.1016/j.resp.2018.02.007_bib0115) 2016; 100 Bates (10.1016/j.resp.2018.02.007_bib0010) 2014; 12 Wang (10.1016/j.resp.2018.02.007_bib0135) 2009; 166 Westerweel (10.1016/j.resp.2018.02.007_bib0145) 1996; 20 Corley (10.1016/j.resp.2018.02.007_bib0020) 2012; 128 Doorly (10.1016/j.resp.2018.02.007_bib0030) 2008; 163 Ito (10.1016/j.resp.2018.02.007_bib0065) 2016; 26 Scarano (10.1016/j.resp.2018.02.007_bib0120) 1999 Inthavong (10.1016/j.resp.2018.02.007_bib0060) 2014; 190 Martonen (10.1016/j.resp.2018.02.007_bib0095) 2001; 13 Carey (10.1016/j.resp.2018.02.007_bib0015) 2007; 35 Phuong (10.1016/j.resp.2018.02.007_bib0110) 2015 Hahn (10.1016/j.resp.2018.02.007_bib0040) 1993; 75 Kepler (10.1016/j.resp.2018.02.007_bib0080) 1998; 150 |
References_xml | – volume: 100 year: 2016 ident: bib0115 article-title: Prediction of convective heat transfer coefficient of human upper and lower airway surfaces in steady and unsteady breathing conditions publication-title: Build. Environ. – volume: 166 start-page: 142 year: 2009 end-page: 151 ident: bib0135 article-title: Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity publication-title: Respir. Physiol. Neurobiol. – start-page: 191 year: 1992 end-page: 215 ident: bib0070 article-title: Theory of Cross-Correlation Analysis of PIV Images Richard D. Keane & Ronald J. Adrian – volume: 27 start-page: 465 year: 1997 end-page: 470 ident: bib0150 article-title: In vivo deposition of inhaled ultrafine particles in the respiratory tract of rhesus monkeys publication-title: Aerosol Sci. Technol. – volume: 20 start-page: 165 year: 1996 end-page: 177 ident: bib0145 article-title: Measurement of fully-developed turbulent pipe flow with digital particle image velocimetry publication-title: Exp. Fluids – volume: 26 start-page: 828 year: 2016 end-page: 840 ident: bib0065 article-title: Prediction of convective heat transfer coefficients for the upper respiratory tracts of rat, dog, monkey, and humans publication-title: Indoor Built Environ. – volume: 150 start-page: 1 year: 1998 end-page: 11 ident: bib0080 article-title: Computer simulation of inspiratory nasal airflow and inhaled gas uptake in a rhesus monkey publication-title: Toxicol. Appl. Pharmacol. – start-page: 94 year: 2015 ident: bib0110 article-title: Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD publication-title: Build. Environ. – year: 2017 ident: bib0090 article-title: First-and second-hand smoke dispersion analysis from e-cigarettes using a computer-simulated person with a respiratory tract model publication-title: Indoor Built Environ. – volume: 35 start-page: 70 year: 2003 end-page: 84 ident: bib0045 article-title: Experimental measurements and computational modeling of the flow field in an idealized human oropharynx publication-title: Exp. Fluids – volume: 92 start-page: 219 year: 2006 end-page: 227 ident: bib0035 article-title: Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation publication-title: Toxicol. Sci. – year: 1999 ident: bib0120 article-title: Iterative Multigrid Approach in PIV Image Processing with Discrete Window Offset 26 – volume: 75 start-page: 1767 year: 1993 end-page: 1775 ident: bib0125 article-title: Correlations between flow resistance and geometry in a model of the human nose publication-title: J. Appl. Physiol. – start-page: 77 year: 1972 end-page: 82 ident: bib0025 article-title: 1972_Experimental Tularemia in Macaca Mulatta Relationship of Aerosol Particle Size to the Infectivity of Airborne Pasteurella Tularensi.pdf 5 – year: 2017 ident: bib0155 article-title: Numerical prediction of tissue dosimetry in respiratory tract using computer simulated person integrated with physiologically based pharmacokinetic–computational fluid dynamics hybrid analysis publication-title: Indoor Built Environ. – start-page: 323 year: 2000 end-page: 337 ident: bib0075 article-title: Detailed Flow Patterns in the Nasal Cavity Detailed Flow Patterns in the Nasal Cavity – volume: 12 start-page: 259 year: 2009 end-page: 266 ident: bib0085 article-title: Investigation on the respiratory airflow in human airway by PIV publication-title: Vis. Soc. Jpn. – volume: 163 start-page: 100 year: 2008 end-page: 110 ident: bib0030 article-title: Mechanics of airflow in the human nasal airways publication-title: Respir. Physiol. Neurobiol. – volume: 29 start-page: 91 year: 2000 end-page: 95 ident: bib0055 article-title: Particle image velocimetry measurements in complex geometries publication-title: Exp. Fluids – volume: 128 start-page: 500 year: 2012 end-page: 516 ident: bib0020 article-title: Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human publication-title: Toxicol. Sci. – volume: 134 start-page: 515 year: 1989 end-page: 527 ident: bib0100 article-title: Effects of formaldehyde gas on the respiratory tract of rhesus monkeys. Pathology and cell proliferation publication-title: Am. J. Pathol. – volume: 110 start-page: 223 year: 1991 end-page: 240 ident: bib0105 article-title: Studies of inspiratory airflow patterns in the nasal passages of the F344 rat and rhesus monkey using nasal molds: relevance to formaldehyde toxicity publication-title: Toxicol. Appl. Pharmacol. – volume: 75 start-page: 2273 year: 1993 end-page: 2287 ident: bib0040 article-title: Velocity profiles measured for airflow through a large-scale model of the human nasal cavity publication-title: J. Appl. Physiol. – volume: 161 start-page: 125 year: 2008 end-page: 135 ident: bib0140 article-title: Numerical simulations for detailed airflow dynamics in a human nasal cavity publication-title: Respir. Physiol. Neurobiol. – volume: 13 start-page: 307 year: 2001 end-page: 356 ident: bib0095 article-title: A nonhuman primate aerosol deposition model for toxicological and pharmaceutical studies publication-title: Inhal. Toxicol. – volume: 138 start-page: 95 year: 1984 end-page: 112 ident: bib0050 article-title: Morphometric studies on the structural development of the lung in Macaca fascicularis during fetal and postnatal life publication-title: J. Anat. – volume: 7 start-page: 515 year: 2010 end-page: 527 ident: bib0130 article-title: Inflow boundary profile prescription for numerical simulation of nasal airflow publication-title: J. R. Soc. Interface – volume: 35 start-page: 27 year: 2007 end-page: 40 ident: bib0015 article-title: Three-Dimensional mapping of ozone-induced injury in the nasal airways of monkeys using magnetic resonance imaging and morphometric techniques publication-title: Toxicol. Pathol. – volume: 190 start-page: 54 year: 2014 end-page: 61 ident: bib0060 article-title: Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity publication-title: Respir. Physiol. Neurobiol. – volume: 12 year: 2014 ident: bib0010 article-title: Dynamics of airflow in a short inhalation publication-title: J. R. Soc. Interface – volume: 55 start-page: 1704 year: 2014 ident: bib0005 article-title: On the refractive index of sodium iodide solutions for index matching in PIV publication-title: Exp. Fluids – volume: 75 start-page: 1767 year: 1993 ident: 10.1016/j.resp.2018.02.007_bib0125 article-title: Correlations between flow resistance and geometry in a model of the human nose publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1993.75.4.1767 – volume: 7 start-page: 515 year: 2010 ident: 10.1016/j.resp.2018.02.007_bib0130 article-title: Inflow boundary profile prescription for numerical simulation of nasal airflow publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2009.0306 – volume: 13 start-page: 307 year: 2001 ident: 10.1016/j.resp.2018.02.007_bib0095 article-title: A nonhuman primate aerosol deposition model for toxicological and pharmaceutical studies publication-title: Inhal. Toxicol. doi: 10.1080/089583701750127412 – volume: 92 start-page: 219 year: 2006 ident: 10.1016/j.resp.2018.02.007_bib0035 article-title: Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfj209 – volume: 12 start-page: 259 year: 2009 ident: 10.1016/j.resp.2018.02.007_bib0085 article-title: Investigation on the respiratory airflow in human airway by PIV publication-title: Vis. Soc. Jpn. doi: 10.1007/BF03181864 – volume: 55 start-page: 1704 year: 2014 ident: 10.1016/j.resp.2018.02.007_bib0005 article-title: On the refractive index of sodium iodide solutions for index matching in PIV publication-title: Exp. Fluids doi: 10.1007/s00348-014-1704-x – volume: 150 start-page: 1 year: 1998 ident: 10.1016/j.resp.2018.02.007_bib0080 article-title: Computer simulation of inspiratory nasal airflow and inhaled gas uptake in a rhesus monkey publication-title: Toxicol. Appl. Pharmacol. doi: 10.1006/taap.1997.8350 – year: 1999 ident: 10.1016/j.resp.2018.02.007_bib0120 – volume: 20 start-page: 165 year: 1996 ident: 10.1016/j.resp.2018.02.007_bib0145 article-title: Measurement of fully-developed turbulent pipe flow with digital particle image velocimetry publication-title: Exp. Fluids doi: 10.1007/BF00190272 – start-page: 94 year: 2015 ident: 10.1016/j.resp.2018.02.007_bib0110 article-title: Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD publication-title: Build. Environ. – year: 2017 ident: 10.1016/j.resp.2018.02.007_bib0155 article-title: Numerical prediction of tissue dosimetry in respiratory tract using computer simulated person integrated with physiologically based pharmacokinetic–computational fluid dynamics hybrid analysis publication-title: Indoor Built Environ. doi: 10.1177/1420326X17694475 – volume: 110 start-page: 223 year: 1991 ident: 10.1016/j.resp.2018.02.007_bib0105 article-title: Studies of inspiratory airflow patterns in the nasal passages of the F344 rat and rhesus monkey using nasal molds: relevance to formaldehyde toxicity publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/S0041-008X(05)80005-5 – volume: 166 start-page: 142 year: 2009 ident: 10.1016/j.resp.2018.02.007_bib0135 article-title: Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2009.02.014 – volume: 138 start-page: 95 year: 1984 ident: 10.1016/j.resp.2018.02.007_bib0050 article-title: Morphometric studies on the structural development of the lung in Macaca fascicularis during fetal and postnatal life publication-title: J. Anat. – start-page: 191 year: 1992 ident: 10.1016/j.resp.2018.02.007_bib0070 – volume: 128 start-page: 500 year: 2012 ident: 10.1016/j.resp.2018.02.007_bib0020 article-title: Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfs168 – volume: 29 start-page: 91 year: 2000 ident: 10.1016/j.resp.2018.02.007_bib0055 article-title: Particle image velocimetry measurements in complex geometries publication-title: Exp. Fluids doi: 10.1007/s003480050430 – volume: 12 year: 2014 ident: 10.1016/j.resp.2018.02.007_bib0010 article-title: Dynamics of airflow in a short inhalation publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2014.0880 – volume: 134 start-page: 515 year: 1989 ident: 10.1016/j.resp.2018.02.007_bib0100 article-title: Effects of formaldehyde gas on the respiratory tract of rhesus monkeys. Pathology and cell proliferation publication-title: Am. J. Pathol. – volume: 161 start-page: 125 year: 2008 ident: 10.1016/j.resp.2018.02.007_bib0140 article-title: Numerical simulations for detailed airflow dynamics in a human nasal cavity publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2008.01.012 – volume: 27 start-page: 465 year: 1997 ident: 10.1016/j.resp.2018.02.007_bib0150 article-title: In vivo deposition of inhaled ultrafine particles in the respiratory tract of rhesus monkeys publication-title: Aerosol Sci. Technol. doi: 10.1080/02786829708965486 – volume: 163 start-page: 100 year: 2008 ident: 10.1016/j.resp.2018.02.007_bib0030 article-title: Mechanics of airflow in the human nasal airways publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2008.07.027 – start-page: 323 year: 2000 ident: 10.1016/j.resp.2018.02.007_bib0075 – volume: 75 start-page: 2273 year: 1993 ident: 10.1016/j.resp.2018.02.007_bib0040 article-title: Velocity profiles measured for airflow through a large-scale model of the human nasal cavity publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1993.75.5.2273 – volume: 35 start-page: 70 year: 2003 ident: 10.1016/j.resp.2018.02.007_bib0045 article-title: Experimental measurements and computational modeling of the flow field in an idealized human oropharynx publication-title: Exp. Fluids doi: 10.1007/s00348-003-0636-7 – volume: 100 year: 2016 ident: 10.1016/j.resp.2018.02.007_bib0115 article-title: Prediction of convective heat transfer coefficient of human upper and lower airway surfaces in steady and unsteady breathing conditions publication-title: Build. Environ. doi: 10.1016/j.buildenv.2016.02.020 – volume: 190 start-page: 54 year: 2014 ident: 10.1016/j.resp.2018.02.007_bib0060 article-title: Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2013.09.004 – start-page: 77 year: 1972 ident: 10.1016/j.resp.2018.02.007_bib0025 – volume: 26 start-page: 828 year: 2016 ident: 10.1016/j.resp.2018.02.007_bib0065 article-title: Prediction of convective heat transfer coefficients for the upper respiratory tracts of rat, dog, monkey, and humans publication-title: Indoor Built Environ. doi: 10.1177/1420326X16662111 – volume: 35 start-page: 27 year: 2007 ident: 10.1016/j.resp.2018.02.007_bib0015 article-title: Three-Dimensional mapping of ozone-induced injury in the nasal airways of monkeys using magnetic resonance imaging and morphometric techniques publication-title: Toxicol. Pathol. doi: 10.1080/01926230601072343 – year: 2017 ident: 10.1016/j.resp.2018.02.007_bib0090 article-title: First-and second-hand smoke dispersion analysis from e-cigarettes using a computer-simulated person with a respiratory tract model publication-title: Indoor Built Environ. doi: 10.1177/1420326X17694476 |
SSID | ssj0017173 |
Score | 2.242469 |
Snippet | •Flow in a realistic rhesus monkey upper airway model is the subject of this study.•We conducted PIV to investigate the flow pattern in both oral and nasal... Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16 |
SubjectTerms | Computational fluid dynamics (CFD) Nasal cavity Oral cavity Particle image velocimetry (PIV) Rhesus monkey’s upper airway |
Title | Flow visualization through particle image velocimetry in realistic model of rhesus monkey’s upper airway |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1569904817303701 https://dx.doi.org/10.1016/j.resp.2018.02.007 https://www.ncbi.nlm.nih.gov/pubmed/29438809 https://www.proquest.com/docview/2002213971 |
Volume | 251 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swEBele9nLWJd1S9sFDcpeihv_kSP7MYSFbO3KWFvom7BkibkkjrGTlryMfY19vX2S3clyoA_toE9GRodt3en-WHe_I-SYGwORDxt5Jo6VBzvReEmeGk-CudJhzpS0VfzfLkaza_b1Jr7ZIZOuFgbTKp3ub3W61dbuztCt5rAqiuElRB6gSlkSgJBG3NZwMcYRP__01zbNI3CnzDjZw9mucKbN8YKIFjErg6TF7eSPGafHnE9rhKavySvnPdJx-4J7ZEeXb0hvXELkvNjQT9Tmc9of5T1yO50v7-ld0WDZZFtsSV1XHlq5T6TFAvQJxbwhVSz0qt7QoqTgR84tfjO1fXLo0tD6p27WDYxL2PR_f_9p6LqqdE2zor7PNm_J9fTz1WTmuc4KnmI8WnkpRI0sl0wZidC0vgRLrv1A8ZgrpUB55iOmM27yOIcdn-hRahKw7FkaAr0ElbRPdstlqd8TKoPYRDnETSb2GQuVjNCFyEKfawM8TPok6JZUKAc7jt0v5qLLL7sVyAaBbBB-KIANfXKypala0I0nZ0cdp0RXTgprIcAmPEkVb6keCNx_6T52wiBgJ-LxSlbq5brBhp5hiA510CfvWinZvn2YMkTdSQ-e-dRD8hJHbablEdld1Wv9AbyhlRxYcR-QF-PJj_PveP1yNrv4Bz4jDOg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LToNAcGPsQS_Gt_W5JsaLIQW6FDg2jU199aIm3jbsshsxLSXQanrzN_w9v8QZWJp4UBOPwE5Y5j3sPAg587WGyId1LO150gJJ1FYQh9oSYK6UGzMpyir-u2Fn8Miun7ynJdKra2EwrdLo_kqnl9ra3GkZbLayJGndQ-QBqpQFDjBp28cargZ2pwJmb3SvbgbDxWGCOWjG9RYCmNqZKs0LglpsW-kEVetO_yf79JP_Wdqh_jpZMw4k7VZ73CBLKt0kW90UgufxnJ7TMqWz_Fe-RV76o8kbfU0KrJys6i2pGcxDM_OVNBmDSqGYOiSTsZrmc5qkFFzJUdnCmZajcuhE0_xZFbMCrlOQ-8_3j4LOskzlNEryt2i-TR77lw-9gWWGK1gScDS1QggcWSyY1AK709oCjLmyHel7vpQS9GfcYSrydezFIPSB6oQ6AOMehS7AC9BKO2Q5naRqj1DheLodQ-ikPZsxV4o2ehGRa_tKAxmDJnFqlHJpOo_jAIwRr1PMXjiSgSMZuO1yIEOTXCxgsqrvxq-r2zWleF1RCrjgYBZ-hfIWUN947k-405oZOAgjnrBEqZrMCpzp6broUztNsltxyWL3bsiw8U64_8-3npCVwcPdLb-9Gt4ckFV8UiVeHpLlaT5TR-AcTcWxYf4v-FMOBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+visualization+through+particle+image+velocimetry+in+realistic+model+of+rhesus+monkey%E2%80%99s+upper+airway&rft.jtitle=Respiratory+physiology+%26+neurobiology&rft.au=Kim%2C+Ji-Woong&rft.au=Phuong%2C+Nguyen+Lu&rft.au=Aramaki%2C+Shin-ichiro&rft.au=Ito%2C+Kazuhide&rft.date=2018-05-01&rft.pub=Elsevier+B.V&rft.issn=1569-9048&rft.volume=251&rft.spage=16&rft.epage=27&rft_id=info:doi/10.1016%2Fj.resp.2018.02.007&rft.externalDocID=S1569904817303701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-9048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-9048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-9048&client=summon |