Flow visualization through particle image velocimetry in realistic model of rhesus monkey’s upper airway

•Flow in a realistic rhesus monkey upper airway model is the subject of this study.•We conducted PIV to investigate the flow pattern in both oral and nasal inhalations.•Vortex flow structures occurred in the nasal vestibule by sudden expansion of vestibule geometry.•The flow profile is found to be w...

Full description

Saved in:
Bibliographic Details
Published inRespiratory physiology & neurobiology Vol. 251; pp. 16 - 27
Main Authors Kim, Ji-Woong, Phuong, Nguyen Lu, Aramaki, Shin-ichiro, Ito, Kazuhide
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2018
Subjects
Online AccessGet full text
ISSN1569-9048
1878-1519
1878-1519
DOI10.1016/j.resp.2018.02.007

Cover

Loading…
Abstract •Flow in a realistic rhesus monkey upper airway model is the subject of this study.•We conducted PIV to investigate the flow pattern in both oral and nasal inhalations.•Vortex flow structures occurred in the nasal vestibule by sudden expansion of vestibule geometry.•The flow profile is found to be well developed in the trachea region for cases involving oral inhalation at 10 and 20 L/min.•The results contribute to understand flow pattern in the complex monkey airway model. Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle image velocimetry (PIV) is an effective in vitro technique that reveals detailed inhalation flow patterns, thereby assisting analyses of inhalation exposure to various substances. A realistic model of a rhesus-monkey upper airway was developed to investigate flow patterns in its oral and nasal cavities through PIV experiments performed under steady-state constant inhalation conditions at various flow rates—4, 10, and 20 L/min. Flow rate of the fluid passing through the inlet into the trachea was measured to obtain characteristic flow mechanisms, and flow phenomena in the model were confirmed via characterized flow fields. It was observed that increase in flow rate leads to constant velocity profiles in upper and lower trachea regions. It is expected that the results of this study would contribute to future validation of studies aimed at developing in silico models, especially those involving computational fluid dynamic (CFD) analysis.
AbstractList Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle image velocimetry (PIV) is an effective in vitro technique that reveals detailed inhalation flow patterns, thereby assisting analyses of inhalation exposure to various substances. A realistic model of a rhesus-monkey upper airway was developed to investigate flow patterns in its oral and nasal cavities through PIV experiments performed under steady-state constant inhalation conditions at various flow rates-4, 10, and 20 L/min. Flow rate of the fluid passing through the inlet into the trachea was measured to obtain characteristic flow mechanisms, and flow phenomena in the model were confirmed via characterized flow fields. It was observed that increase in flow rate leads to constant velocity profiles in upper and lower trachea regions. It is expected that the results of this study would contribute to future validation of studies aimed at developing in silico models, especially those involving computational fluid dynamic (CFD) analysis.Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle image velocimetry (PIV) is an effective in vitro technique that reveals detailed inhalation flow patterns, thereby assisting analyses of inhalation exposure to various substances. A realistic model of a rhesus-monkey upper airway was developed to investigate flow patterns in its oral and nasal cavities through PIV experiments performed under steady-state constant inhalation conditions at various flow rates-4, 10, and 20 L/min. Flow rate of the fluid passing through the inlet into the trachea was measured to obtain characteristic flow mechanisms, and flow phenomena in the model were confirmed via characterized flow fields. It was observed that increase in flow rate leads to constant velocity profiles in upper and lower trachea regions. It is expected that the results of this study would contribute to future validation of studies aimed at developing in silico models, especially those involving computational fluid dynamic (CFD) analysis.
•Flow in a realistic rhesus monkey upper airway model is the subject of this study.•We conducted PIV to investigate the flow pattern in both oral and nasal inhalations.•Vortex flow structures occurred in the nasal vestibule by sudden expansion of vestibule geometry.•The flow profile is found to be well developed in the trachea region for cases involving oral inhalation at 10 and 20 L/min.•The results contribute to understand flow pattern in the complex monkey airway model. Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle image velocimetry (PIV) is an effective in vitro technique that reveals detailed inhalation flow patterns, thereby assisting analyses of inhalation exposure to various substances. A realistic model of a rhesus-monkey upper airway was developed to investigate flow patterns in its oral and nasal cavities through PIV experiments performed under steady-state constant inhalation conditions at various flow rates—4, 10, and 20 L/min. Flow rate of the fluid passing through the inlet into the trachea was measured to obtain characteristic flow mechanisms, and flow phenomena in the model were confirmed via characterized flow fields. It was observed that increase in flow rate leads to constant velocity profiles in upper and lower trachea regions. It is expected that the results of this study would contribute to future validation of studies aimed at developing in silico models, especially those involving computational fluid dynamic (CFD) analysis.
Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle image velocimetry (PIV) is an effective in vitro technique that reveals detailed inhalation flow patterns, thereby assisting analyses of inhalation exposure to various substances. A realistic model of a rhesus-monkey upper airway was developed to investigate flow patterns in its oral and nasal cavities through PIV experiments performed under steady-state constant inhalation conditions at various flow rates-4, 10, and 20 L/min. Flow rate of the fluid passing through the inlet into the trachea was measured to obtain characteristic flow mechanisms, and flow phenomena in the model were confirmed via characterized flow fields. It was observed that increase in flow rate leads to constant velocity profiles in upper and lower trachea regions. It is expected that the results of this study would contribute to future validation of studies aimed at developing in silico models, especially those involving computational fluid dynamic (CFD) analysis.
Author Phuong, Nguyen Lu
Aramaki, Shin-ichiro
Ito, Kazuhide
Kim, Ji-Woong
Author_xml – sequence: 1
  givenname: Ji-Woong
  surname: Kim
  fullname: Kim, Ji-Woong
  organization: Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan
– sequence: 2
  givenname: Nguyen Lu
  surname: Phuong
  fullname: Phuong, Nguyen Lu
  email: nlphuong@kyudai.jp
  organization: Faculty of Engineering Sciences, Kyushu University, Japan
– sequence: 3
  givenname: Shin-ichiro
  surname: Aramaki
  fullname: Aramaki, Shin-ichiro
  organization: Nishinippon Institute of Technology, Japan
– sequence: 4
  givenname: Kazuhide
  surname: Ito
  fullname: Ito, Kazuhide
  organization: Faculty of Engineering Sciences, Kyushu University, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29438809$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtuFDEUhi2UKPcXoEAuaWawPRfbEQ2KCCBFSkNqy-M5k_XiGU9sz0ZLxWvwejwJXjZQpAjV8ZG-70j-_1N0MPkJEHpNSUkJbd-tywBxLhmhoiSsJIS_QidUcFHQhsqD_G5aWUhSi2N0GuOaEMopr47QMZN1JQSRJ2h97fwj3ti4aGe_62T9hNMq-OV-hWcdkjUOsB31PeANOG_sCClssZ1wgGzEDODR9-CwH3BYQVxi3qdvsP3142fEyzxDwNqGR709R4eDdhEunuYZurv--PXqc3Fz--nL1YebwtS8SoWsCav7rjZD1zaVJB1hDAg1vOHGGFq3fVuD5kPf9KJiAlo5CEGFliz7HW-rM_R2f3cO_mGBmNRoowHn9AR-iYqRfJFWktOMvnlCl26EXs0hfzVs1d98MsD2gAk-xgDDP4QStStBrdWuBLUrQRGmcglZEs8kY9OfaFPQ1r2svt-rkAPaWAgqGguTgd4GMEn13r6sXz7TjbOTNdrlQv4n_waGabi4
CitedBy_id crossref_primary_10_1016_j_resp_2019_103304
crossref_primary_10_1080_10255842_2020_1819256
crossref_primary_10_1016_j_resp_2020_103587
crossref_primary_10_1142_S0219519421500706
crossref_primary_10_1016_j_jaerosci_2022_106099
crossref_primary_10_1080_08958378_2020_1800148
Cites_doi 10.1152/jappl.1993.75.4.1767
10.1098/rsif.2009.0306
10.1080/089583701750127412
10.1093/toxsci/kfj209
10.1007/BF03181864
10.1007/s00348-014-1704-x
10.1006/taap.1997.8350
10.1007/BF00190272
10.1177/1420326X17694475
10.1016/S0041-008X(05)80005-5
10.1016/j.resp.2009.02.014
10.1093/toxsci/kfs168
10.1007/s003480050430
10.1098/rsif.2014.0880
10.1016/j.resp.2008.01.012
10.1080/02786829708965486
10.1016/j.resp.2008.07.027
10.1152/jappl.1993.75.5.2273
10.1007/s00348-003-0636-7
10.1016/j.buildenv.2016.02.020
10.1016/j.resp.2013.09.004
10.1177/1420326X16662111
10.1080/01926230601072343
10.1177/1420326X17694476
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.resp.2018.02.007
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1878-1519
EndPage 27
ExternalDocumentID 29438809
10_1016_j_resp_2018_02_007
S1569904817303701
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGRDE
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OHT
OI-
OU.
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSN
SSU
SSZ
T5K
UHS
Z5R
ZGI
~02
~G-
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
LCYCR
RIG
ZA5
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c473t-94024db4cfb65390b022e01c757ccc146d64ea7fd5d8328e69f8818a92c47b763
IEDL.DBID .~1
ISSN 1569-9048
1878-1519
IngestDate Thu Sep 04 16:04:28 EDT 2025
Mon Jul 21 06:03:54 EDT 2025
Tue Jul 01 03:30:45 EDT 2025
Thu Apr 24 23:07:52 EDT 2025
Fri Feb 23 02:19:08 EST 2024
Tue Aug 26 16:32:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Particle image velocimetry (PIV)
Oral cavity
Nasal cavity
Rhesus monkey’s upper airway
Computational fluid dynamics (CFD)
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-94024db4cfb65390b022e01c757ccc146d64ea7fd5d8328e69f8818a92c47b763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29438809
PQID 2002213971
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2002213971
pubmed_primary_29438809
crossref_primary_10_1016_j_resp_2018_02_007
crossref_citationtrail_10_1016_j_resp_2018_02_007
elsevier_sciencedirect_doi_10_1016_j_resp_2018_02_007
elsevier_clinicalkey_doi_10_1016_j_resp_2018_02_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Respiratory physiology & neurobiology
PublicationTitleAlternate Respir Physiol Neurobiol
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Phuong, Yamashita, Yoo, Ito (bib0115) 2016; 100
Hopkins, Kelly, Wexler, Prasad (bib0055) 2000; 29
Hislop, Howard, Fairweather (bib0050) 1984; 138
Martonen, Katz, Musante (bib0095) 2001; 13
Wen, Inthavong, Tu, Wang (bib0140) 2008; 161
Carey, Minard, Trease, Wagner, Garcia, Ballinger, Kimbell, Plopper, Corley, Postlethwait, Harkema (bib0015) 2007; 35
Doorly, Taylor, Schroter (bib0030) 2008; 163
Wang, Inthavong, Wen, Tu, Xue (bib0135) 2009; 166
Keane, Adrian (bib0070) 1992
Heenan, Matida, Pollard, Finlay (bib0045) 2003; 35
Kim, Chung (bib0085) 2009; 12
Bai, Katz (bib0005) 2014; 55
Schreck, Sullivan, Ho, Chang (bib0125) 1993; 75
Ito, Mitsumune, Kuga, Phuong, Tani, Inthavong (bib0065) 2016; 26
Kuga, Ito, Yoo, Chen, Wang, Liao, Fowles, Shusterman, Kumagai (bib0090) 2017
Kelly, Prasad, Wexler (bib0075) 2000
Yoo, Ito (bib0155) 2017
Monticello, Morgan, Everitt, Popp (bib0100) 1989; 134
Yeh, Muggenburg, Harkema (bib0150) 1997; 27
Hahn, Scherer, Mozell (bib0040) 1993; 75
Westerweel, Draad, van der Hoeven, van Oord (bib0145) 1996; 20
Phuong, Ito (bib0110) 2015
Bates, Doorly, Cetto, Calmet, Gambaruto, Tolley, Houzeaux, Schroter (bib0010) 2014; 12
Inthavong, Shang, Tu (bib0060) 2014; 190
Morgan, Kimbell, Monticello, Patra, Fleishman (bib0105) 1991; 110
Day, Berendt (bib0025) 1972
Kepler, Richardson, Morgan, Kimbell (bib0080) 1998; 150
Corley, Kabilan, Kuprat, Carson, Minard, Jacob, Timchalk, Glenny, Pipavath, Cox, Wallis, Larson, Fanucchi, Postlethwait, Einstein (bib0020) 2012; 128
Dorman, Struve, Wong, Dye, Robertson (bib0035) 2006; 92
Scarano, Riethmuller (bib0120) 1999
Taylor, Doorly, Schroter (bib0130) 2010; 7
Hopkins (10.1016/j.resp.2018.02.007_bib0055) 2000; 29
Bai (10.1016/j.resp.2018.02.007_bib0005) 2014; 55
Morgan (10.1016/j.resp.2018.02.007_bib0105) 1991; 110
Kuga (10.1016/j.resp.2018.02.007_bib0090) 2017
Dorman (10.1016/j.resp.2018.02.007_bib0035) 2006; 92
Taylor (10.1016/j.resp.2018.02.007_bib0130) 2010; 7
Day (10.1016/j.resp.2018.02.007_bib0025) 1972
Kelly (10.1016/j.resp.2018.02.007_bib0075) 2000
Wen (10.1016/j.resp.2018.02.007_bib0140) 2008; 161
Monticello (10.1016/j.resp.2018.02.007_bib0100) 1989; 134
Keane (10.1016/j.resp.2018.02.007_bib0070) 1992
Yoo (10.1016/j.resp.2018.02.007_bib0155) 2017
Kim (10.1016/j.resp.2018.02.007_bib0085) 2009; 12
Hislop (10.1016/j.resp.2018.02.007_bib0050) 1984; 138
Schreck (10.1016/j.resp.2018.02.007_bib0125) 1993; 75
Yeh (10.1016/j.resp.2018.02.007_bib0150) 1997; 27
Heenan (10.1016/j.resp.2018.02.007_bib0045) 2003; 35
Phuong (10.1016/j.resp.2018.02.007_bib0115) 2016; 100
Bates (10.1016/j.resp.2018.02.007_bib0010) 2014; 12
Wang (10.1016/j.resp.2018.02.007_bib0135) 2009; 166
Westerweel (10.1016/j.resp.2018.02.007_bib0145) 1996; 20
Corley (10.1016/j.resp.2018.02.007_bib0020) 2012; 128
Doorly (10.1016/j.resp.2018.02.007_bib0030) 2008; 163
Ito (10.1016/j.resp.2018.02.007_bib0065) 2016; 26
Scarano (10.1016/j.resp.2018.02.007_bib0120) 1999
Inthavong (10.1016/j.resp.2018.02.007_bib0060) 2014; 190
Martonen (10.1016/j.resp.2018.02.007_bib0095) 2001; 13
Carey (10.1016/j.resp.2018.02.007_bib0015) 2007; 35
Phuong (10.1016/j.resp.2018.02.007_bib0110) 2015
Hahn (10.1016/j.resp.2018.02.007_bib0040) 1993; 75
Kepler (10.1016/j.resp.2018.02.007_bib0080) 1998; 150
References_xml – volume: 100
  year: 2016
  ident: bib0115
  article-title: Prediction of convective heat transfer coefficient of human upper and lower airway surfaces in steady and unsteady breathing conditions
  publication-title: Build. Environ.
– volume: 166
  start-page: 142
  year: 2009
  end-page: 151
  ident: bib0135
  article-title: Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity
  publication-title: Respir. Physiol. Neurobiol.
– start-page: 191
  year: 1992
  end-page: 215
  ident: bib0070
  article-title: Theory of Cross-Correlation Analysis of PIV Images Richard D. Keane & Ronald J. Adrian
– volume: 27
  start-page: 465
  year: 1997
  end-page: 470
  ident: bib0150
  article-title: In vivo deposition of inhaled ultrafine particles in the respiratory tract of rhesus monkeys
  publication-title: Aerosol Sci. Technol.
– volume: 20
  start-page: 165
  year: 1996
  end-page: 177
  ident: bib0145
  article-title: Measurement of fully-developed turbulent pipe flow with digital particle image velocimetry
  publication-title: Exp. Fluids
– volume: 26
  start-page: 828
  year: 2016
  end-page: 840
  ident: bib0065
  article-title: Prediction of convective heat transfer coefficients for the upper respiratory tracts of rat, dog, monkey, and humans
  publication-title: Indoor Built Environ.
– volume: 150
  start-page: 1
  year: 1998
  end-page: 11
  ident: bib0080
  article-title: Computer simulation of inspiratory nasal airflow and inhaled gas uptake in a rhesus monkey
  publication-title: Toxicol. Appl. Pharmacol.
– start-page: 94
  year: 2015
  ident: bib0110
  article-title: Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD
  publication-title: Build. Environ.
– year: 2017
  ident: bib0090
  article-title: First-and second-hand smoke dispersion analysis from e-cigarettes using a computer-simulated person with a respiratory tract model
  publication-title: Indoor Built Environ.
– volume: 35
  start-page: 70
  year: 2003
  end-page: 84
  ident: bib0045
  article-title: Experimental measurements and computational modeling of the flow field in an idealized human oropharynx
  publication-title: Exp. Fluids
– volume: 92
  start-page: 219
  year: 2006
  end-page: 227
  ident: bib0035
  article-title: Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation
  publication-title: Toxicol. Sci.
– year: 1999
  ident: bib0120
  article-title: Iterative Multigrid Approach in PIV Image Processing with Discrete Window Offset 26
– volume: 75
  start-page: 1767
  year: 1993
  end-page: 1775
  ident: bib0125
  article-title: Correlations between flow resistance and geometry in a model of the human nose
  publication-title: J. Appl. Physiol.
– start-page: 77
  year: 1972
  end-page: 82
  ident: bib0025
  article-title: 1972_Experimental Tularemia in Macaca Mulatta Relationship of Aerosol Particle Size to the Infectivity of Airborne Pasteurella Tularensi.pdf 5
– year: 2017
  ident: bib0155
  article-title: Numerical prediction of tissue dosimetry in respiratory tract using computer simulated person integrated with physiologically based pharmacokinetic–computational fluid dynamics hybrid analysis
  publication-title: Indoor Built Environ.
– start-page: 323
  year: 2000
  end-page: 337
  ident: bib0075
  article-title: Detailed Flow Patterns in the Nasal Cavity Detailed Flow Patterns in the Nasal Cavity
– volume: 12
  start-page: 259
  year: 2009
  end-page: 266
  ident: bib0085
  article-title: Investigation on the respiratory airflow in human airway by PIV
  publication-title: Vis. Soc. Jpn.
– volume: 163
  start-page: 100
  year: 2008
  end-page: 110
  ident: bib0030
  article-title: Mechanics of airflow in the human nasal airways
  publication-title: Respir. Physiol. Neurobiol.
– volume: 29
  start-page: 91
  year: 2000
  end-page: 95
  ident: bib0055
  article-title: Particle image velocimetry measurements in complex geometries
  publication-title: Exp. Fluids
– volume: 128
  start-page: 500
  year: 2012
  end-page: 516
  ident: bib0020
  article-title: Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human
  publication-title: Toxicol. Sci.
– volume: 134
  start-page: 515
  year: 1989
  end-page: 527
  ident: bib0100
  article-title: Effects of formaldehyde gas on the respiratory tract of rhesus monkeys. Pathology and cell proliferation
  publication-title: Am. J. Pathol.
– volume: 110
  start-page: 223
  year: 1991
  end-page: 240
  ident: bib0105
  article-title: Studies of inspiratory airflow patterns in the nasal passages of the F344 rat and rhesus monkey using nasal molds: relevance to formaldehyde toxicity
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 75
  start-page: 2273
  year: 1993
  end-page: 2287
  ident: bib0040
  article-title: Velocity profiles measured for airflow through a large-scale model of the human nasal cavity
  publication-title: J. Appl. Physiol.
– volume: 161
  start-page: 125
  year: 2008
  end-page: 135
  ident: bib0140
  article-title: Numerical simulations for detailed airflow dynamics in a human nasal cavity
  publication-title: Respir. Physiol. Neurobiol.
– volume: 13
  start-page: 307
  year: 2001
  end-page: 356
  ident: bib0095
  article-title: A nonhuman primate aerosol deposition model for toxicological and pharmaceutical studies
  publication-title: Inhal. Toxicol.
– volume: 138
  start-page: 95
  year: 1984
  end-page: 112
  ident: bib0050
  article-title: Morphometric studies on the structural development of the lung in Macaca fascicularis during fetal and postnatal life
  publication-title: J. Anat.
– volume: 7
  start-page: 515
  year: 2010
  end-page: 527
  ident: bib0130
  article-title: Inflow boundary profile prescription for numerical simulation of nasal airflow
  publication-title: J. R. Soc. Interface
– volume: 35
  start-page: 27
  year: 2007
  end-page: 40
  ident: bib0015
  article-title: Three-Dimensional mapping of ozone-induced injury in the nasal airways of monkeys using magnetic resonance imaging and morphometric techniques
  publication-title: Toxicol. Pathol.
– volume: 190
  start-page: 54
  year: 2014
  end-page: 61
  ident: bib0060
  article-title: Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity
  publication-title: Respir. Physiol. Neurobiol.
– volume: 12
  year: 2014
  ident: bib0010
  article-title: Dynamics of airflow in a short inhalation
  publication-title: J. R. Soc. Interface
– volume: 55
  start-page: 1704
  year: 2014
  ident: bib0005
  article-title: On the refractive index of sodium iodide solutions for index matching in PIV
  publication-title: Exp. Fluids
– volume: 75
  start-page: 1767
  year: 1993
  ident: 10.1016/j.resp.2018.02.007_bib0125
  article-title: Correlations between flow resistance and geometry in a model of the human nose
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1993.75.4.1767
– volume: 7
  start-page: 515
  year: 2010
  ident: 10.1016/j.resp.2018.02.007_bib0130
  article-title: Inflow boundary profile prescription for numerical simulation of nasal airflow
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2009.0306
– volume: 13
  start-page: 307
  year: 2001
  ident: 10.1016/j.resp.2018.02.007_bib0095
  article-title: A nonhuman primate aerosol deposition model for toxicological and pharmaceutical studies
  publication-title: Inhal. Toxicol.
  doi: 10.1080/089583701750127412
– volume: 92
  start-page: 219
  year: 2006
  ident: 10.1016/j.resp.2018.02.007_bib0035
  article-title: Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfj209
– volume: 12
  start-page: 259
  year: 2009
  ident: 10.1016/j.resp.2018.02.007_bib0085
  article-title: Investigation on the respiratory airflow in human airway by PIV
  publication-title: Vis. Soc. Jpn.
  doi: 10.1007/BF03181864
– volume: 55
  start-page: 1704
  year: 2014
  ident: 10.1016/j.resp.2018.02.007_bib0005
  article-title: On the refractive index of sodium iodide solutions for index matching in PIV
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-014-1704-x
– volume: 150
  start-page: 1
  year: 1998
  ident: 10.1016/j.resp.2018.02.007_bib0080
  article-title: Computer simulation of inspiratory nasal airflow and inhaled gas uptake in a rhesus monkey
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1006/taap.1997.8350
– year: 1999
  ident: 10.1016/j.resp.2018.02.007_bib0120
– volume: 20
  start-page: 165
  year: 1996
  ident: 10.1016/j.resp.2018.02.007_bib0145
  article-title: Measurement of fully-developed turbulent pipe flow with digital particle image velocimetry
  publication-title: Exp. Fluids
  doi: 10.1007/BF00190272
– start-page: 94
  year: 2015
  ident: 10.1016/j.resp.2018.02.007_bib0110
  article-title: Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD
  publication-title: Build. Environ.
– year: 2017
  ident: 10.1016/j.resp.2018.02.007_bib0155
  article-title: Numerical prediction of tissue dosimetry in respiratory tract using computer simulated person integrated with physiologically based pharmacokinetic–computational fluid dynamics hybrid analysis
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X17694475
– volume: 110
  start-page: 223
  year: 1991
  ident: 10.1016/j.resp.2018.02.007_bib0105
  article-title: Studies of inspiratory airflow patterns in the nasal passages of the F344 rat and rhesus monkey using nasal molds: relevance to formaldehyde toxicity
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/S0041-008X(05)80005-5
– volume: 166
  start-page: 142
  year: 2009
  ident: 10.1016/j.resp.2018.02.007_bib0135
  article-title: Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2009.02.014
– volume: 138
  start-page: 95
  year: 1984
  ident: 10.1016/j.resp.2018.02.007_bib0050
  article-title: Morphometric studies on the structural development of the lung in Macaca fascicularis during fetal and postnatal life
  publication-title: J. Anat.
– start-page: 191
  year: 1992
  ident: 10.1016/j.resp.2018.02.007_bib0070
– volume: 128
  start-page: 500
  year: 2012
  ident: 10.1016/j.resp.2018.02.007_bib0020
  article-title: Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfs168
– volume: 29
  start-page: 91
  year: 2000
  ident: 10.1016/j.resp.2018.02.007_bib0055
  article-title: Particle image velocimetry measurements in complex geometries
  publication-title: Exp. Fluids
  doi: 10.1007/s003480050430
– volume: 12
  year: 2014
  ident: 10.1016/j.resp.2018.02.007_bib0010
  article-title: Dynamics of airflow in a short inhalation
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2014.0880
– volume: 134
  start-page: 515
  year: 1989
  ident: 10.1016/j.resp.2018.02.007_bib0100
  article-title: Effects of formaldehyde gas on the respiratory tract of rhesus monkeys. Pathology and cell proliferation
  publication-title: Am. J. Pathol.
– volume: 161
  start-page: 125
  year: 2008
  ident: 10.1016/j.resp.2018.02.007_bib0140
  article-title: Numerical simulations for detailed airflow dynamics in a human nasal cavity
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2008.01.012
– volume: 27
  start-page: 465
  year: 1997
  ident: 10.1016/j.resp.2018.02.007_bib0150
  article-title: In vivo deposition of inhaled ultrafine particles in the respiratory tract of rhesus monkeys
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786829708965486
– volume: 163
  start-page: 100
  year: 2008
  ident: 10.1016/j.resp.2018.02.007_bib0030
  article-title: Mechanics of airflow in the human nasal airways
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2008.07.027
– start-page: 323
  year: 2000
  ident: 10.1016/j.resp.2018.02.007_bib0075
– volume: 75
  start-page: 2273
  year: 1993
  ident: 10.1016/j.resp.2018.02.007_bib0040
  article-title: Velocity profiles measured for airflow through a large-scale model of the human nasal cavity
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1993.75.5.2273
– volume: 35
  start-page: 70
  year: 2003
  ident: 10.1016/j.resp.2018.02.007_bib0045
  article-title: Experimental measurements and computational modeling of the flow field in an idealized human oropharynx
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-003-0636-7
– volume: 100
  year: 2016
  ident: 10.1016/j.resp.2018.02.007_bib0115
  article-title: Prediction of convective heat transfer coefficient of human upper and lower airway surfaces in steady and unsteady breathing conditions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.02.020
– volume: 190
  start-page: 54
  year: 2014
  ident: 10.1016/j.resp.2018.02.007_bib0060
  article-title: Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2013.09.004
– start-page: 77
  year: 1972
  ident: 10.1016/j.resp.2018.02.007_bib0025
– volume: 26
  start-page: 828
  year: 2016
  ident: 10.1016/j.resp.2018.02.007_bib0065
  article-title: Prediction of convective heat transfer coefficients for the upper respiratory tracts of rat, dog, monkey, and humans
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X16662111
– volume: 35
  start-page: 27
  year: 2007
  ident: 10.1016/j.resp.2018.02.007_bib0015
  article-title: Three-Dimensional mapping of ozone-induced injury in the nasal airways of monkeys using magnetic resonance imaging and morphometric techniques
  publication-title: Toxicol. Pathol.
  doi: 10.1080/01926230601072343
– year: 2017
  ident: 10.1016/j.resp.2018.02.007_bib0090
  article-title: First-and second-hand smoke dispersion analysis from e-cigarettes using a computer-simulated person with a respiratory tract model
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X17694476
SSID ssj0017173
Score 2.242469
Snippet •Flow in a realistic rhesus monkey upper airway model is the subject of this study.•We conducted PIV to investigate the flow pattern in both oral and nasal...
Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16
SubjectTerms Computational fluid dynamics (CFD)
Nasal cavity
Oral cavity
Particle image velocimetry (PIV)
Rhesus monkey’s upper airway
Title Flow visualization through particle image velocimetry in realistic model of rhesus monkey’s upper airway
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1569904817303701
https://dx.doi.org/10.1016/j.resp.2018.02.007
https://www.ncbi.nlm.nih.gov/pubmed/29438809
https://www.proquest.com/docview/2002213971
Volume 251
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swEBele9nLWJd1S9sFDcpeihv_kSP7MYSFbO3KWFvom7BkibkkjrGTlryMfY19vX2S3clyoA_toE9GRodt3en-WHe_I-SYGwORDxt5Jo6VBzvReEmeGk-CudJhzpS0VfzfLkaza_b1Jr7ZIZOuFgbTKp3ub3W61dbuztCt5rAqiuElRB6gSlkSgJBG3NZwMcYRP__01zbNI3CnzDjZw9mucKbN8YKIFjErg6TF7eSPGafHnE9rhKavySvnPdJx-4J7ZEeXb0hvXELkvNjQT9Tmc9of5T1yO50v7-ld0WDZZFtsSV1XHlq5T6TFAvQJxbwhVSz0qt7QoqTgR84tfjO1fXLo0tD6p27WDYxL2PR_f_9p6LqqdE2zor7PNm_J9fTz1WTmuc4KnmI8WnkpRI0sl0wZidC0vgRLrv1A8ZgrpUB55iOmM27yOIcdn-hRahKw7FkaAr0ElbRPdstlqd8TKoPYRDnETSb2GQuVjNCFyEKfawM8TPok6JZUKAc7jt0v5qLLL7sVyAaBbBB-KIANfXKypala0I0nZ0cdp0RXTgprIcAmPEkVb6keCNx_6T52wiBgJ-LxSlbq5brBhp5hiA510CfvWinZvn2YMkTdSQ-e-dRD8hJHbablEdld1Wv9AbyhlRxYcR-QF-PJj_PveP1yNrv4Bz4jDOg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LToNAcGPsQS_Gt_W5JsaLIQW6FDg2jU199aIm3jbsshsxLSXQanrzN_w9v8QZWJp4UBOPwE5Y5j3sPAg587WGyId1LO150gJJ1FYQh9oSYK6UGzMpyir-u2Fn8Miun7ynJdKra2EwrdLo_kqnl9ra3GkZbLayJGndQ-QBqpQFDjBp28cargZ2pwJmb3SvbgbDxWGCOWjG9RYCmNqZKs0LglpsW-kEVetO_yf79JP_Wdqh_jpZMw4k7VZ73CBLKt0kW90UgufxnJ7TMqWz_Fe-RV76o8kbfU0KrJys6i2pGcxDM_OVNBmDSqGYOiSTsZrmc5qkFFzJUdnCmZajcuhE0_xZFbMCrlOQ-8_3j4LOskzlNEryt2i-TR77lw-9gWWGK1gScDS1QggcWSyY1AK709oCjLmyHel7vpQS9GfcYSrydezFIPSB6oQ6AOMehS7AC9BKO2Q5naRqj1DheLodQ-ikPZsxV4o2ehGRa_tKAxmDJnFqlHJpOo_jAIwRr1PMXjiSgSMZuO1yIEOTXCxgsqrvxq-r2zWleF1RCrjgYBZ-hfIWUN947k-405oZOAgjnrBEqZrMCpzp6broUztNsltxyWL3bsiw8U64_8-3npCVwcPdLb-9Gt4ckFV8UiVeHpLlaT5TR-AcTcWxYf4v-FMOBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+visualization+through+particle+image+velocimetry+in+realistic+model+of+rhesus+monkey%E2%80%99s+upper+airway&rft.jtitle=Respiratory+physiology+%26+neurobiology&rft.au=Kim%2C+Ji-Woong&rft.au=Phuong%2C+Nguyen+Lu&rft.au=Aramaki%2C+Shin-ichiro&rft.au=Ito%2C+Kazuhide&rft.date=2018-05-01&rft.pub=Elsevier+B.V&rft.issn=1569-9048&rft.volume=251&rft.spage=16&rft.epage=27&rft_id=info:doi/10.1016%2Fj.resp.2018.02.007&rft.externalDocID=S1569904817303701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-9048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-9048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-9048&client=summon