Oncogene-dependent engraftment of human myeloid leukemia cells in immunosuppressed mice

We have developed an in vivo model of differentiated human acute myeloid leukemia (AML) by retroviral infection of the cytokine-dependent AML cell line TF-1 with the v-Src oncogene. When injected either intravenously or intraperitoneally into 300 cGy irradiated SCID mice, animals formed multiple gra...

Full description

Saved in:
Bibliographic Details
Published inLeukemia Vol. 15; no. 5; pp. 814 - 818
Main Authors KISER, M, MCCUBREY, J. A, FRANKEL, A. E, STEELMAN, L. S, SHELTON, J. G, RAMAGE, J, ALEXANDER, R. L, KUCERA, G. L, PETTENATI, M, WILLINGHAM, M. C, MILLER, M. S
Format Journal Article
LanguageEnglish
Published London Nature Publishing 01.05.2001
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have developed an in vivo model of differentiated human acute myeloid leukemia (AML) by retroviral infection of the cytokine-dependent AML cell line TF-1 with the v-Src oncogene. When injected either intravenously or intraperitoneally into 300 cGy irradiated SCID mice, animals formed multiple granulocytic sarcomas involving the adrenals, kidneys, lymph nodes and other organs. The mean survival time was 34+/-10 days (n = 40) after intravenous injection and 24+/-3 days (n = 5) after intraperitoneal injection of 20 million cells. The cells recovered from leukemic animals continued to express interleukin-3 receptors and remained sensitive to the diphtheria fusion protein DT388IL3. Further, these granulocytic sarcoma-derived cells grew again in irradiated SCID mice (n = 10). The cytogenetic abnormalities observed prior to inoculation in mice were stably present after in vivo passage. Similar to the results with v-Src transfected TF-1 cells, in vivo leukemic growth was observed with TF-1 cells transfected with the human granulocyte-macrophage colony-stimulating factor gene (n = 5) and with TF-1 cells recovered from subcutaneous tumors in nude mice (n = 5). In contrast, TF-1 cells expressing v-Ha-Ras (n = 5), BCR-ABL (n = 5), or activated Raf-1 (n = 44) did not grow in irradiated SCID mice. This is a unique, reproducible model for in vivo growth of a differentiated human acute myeloid leukemia and may be useful in the assessment of anti-leukemic therapeutics which have human-specific molecular targets such as the interleukin-3 receptor.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0887-6924
1476-5551
DOI:10.1038/sj.leu.2402084