A Bayesian Race Model for Recognition Memory
Many psychological models use the idea of a trace, which represents a change in a person's cognitive state that arises as a result of processing a given stimulus. These models assume that a trace is always laid down when a stimulus is processed. In addition, some of these models explain how res...
Saved in:
Published in | Journal of the American Statistical Association Vol. 112; no. 517; pp. 77 - 91 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
02.01.2017
Taylor & Francis Group,LLC Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Many psychological models use the idea of a trace, which represents a change in a person's cognitive state that arises as a result of processing a given stimulus. These models assume that a trace is always laid down when a stimulus is processed. In addition, some of these models explain how response times (RTs) and response accuracies arise from a process in which the different traces race against each other.
In this article, we present a Bayesian hierarchical model of RT and accuracy in a difficult recognition memory experiment. The model includes a stochastic component that probabilistically determines whether a trace is laid down. The RTs and accuracies are modeled using a minimum gamma race model, with extra model components that allow for the effects of stimulus, sequential dependencies, and trend. Subject-specific effects, as well as ancillary effects due to processes such as perceptual encoding and guessing, are also captured in the hierarchy. Predictive checks show that our model fits the data well. Marginal likelihood evaluations show better predictive performance of our model compared to an approximate Weibull model. Supplementary materials for this article are available online. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0162-1459 1537-274X 1537-274X |
DOI: | 10.1080/01621459.2016.1194844 |