Quick and Spontaneous Transformation between [3Fe-4S] and [4Fe-4S] Iron-Sulfur Clusters in the tRNA-Thiolation Enzyme TtuA

Iron-sulfur (Fe-S) clusters are essential cofactors for enzyme activity. These Fe-S clusters are present in structurally diverse forms, including [4Fe-4S] and [3Fe-4S]. Type-identification of the Fe-S cluster is indispensable in understanding the catalytic mechanism of enzymes. However, identifying...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 24; no. 1; p. 833
Main Authors Ishizaka, Masato, Chen, Minghao, Narai, Shun, Tanaka, Yoshikazu, Ose, Toyoyuki, Horitani, Masaki, Yao, Min
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 03.01.2023
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Iron-sulfur (Fe-S) clusters are essential cofactors for enzyme activity. These Fe-S clusters are present in structurally diverse forms, including [4Fe-4S] and [3Fe-4S]. Type-identification of the Fe-S cluster is indispensable in understanding the catalytic mechanism of enzymes. However, identifying [4Fe-4S] and [3Fe-4S] clusters in particular is challenging because of their rapid transformation in response to oxidation-reduction events. In this study, we focused on the relationship between the Fe-S cluster type and the catalytic activity of a tRNA-thiolation enzyme (TtuA). We reconstituted [4Fe-4S]-TtuA, prepared [3Fe-4S]-TtuA by oxidizing [4Fe-4S]-TtuA under strictly anaerobic conditions, and then observed changes in the Fe-S clusters in the samples and the enzymatic activity in the time-course experiments. Electron paramagnetic resonance analysis revealed that [3Fe-4S]-TtuA spontaneously transforms into [4Fe-4S]-TtuA in minutes to one hour without an additional free Fe source in the solution. Although the TtuA immediately after oxidation of [4Fe-4S]-TtuA was inactive [3Fe-4S]-TtuA, its activity recovered to a significant level compared to [4Fe-4S]-TtuA after one hour, corresponding to an increase of [4Fe-4S]-TtuA in the solution. Our findings reveal that [3Fe-4S]-TtuA is highly inactive and unstable. Moreover, time-course analysis of structural changes and activity under strictly anaerobic conditions further unraveled the Fe-S cluster type used by the tRNA-thiolation enzyme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms24010833