Exploring the caves: cavins, caveolins and caveolae

Caveolae are ampullate (flask-shaped) invaginations that are abundant in the plasma membrane of many mammalian cell types. Although caveolae are implicated in a wide range of processes including endothelial transcytosis, lipid homeostasis and cellular signalling, a detailed molecular picture of many...

Full description

Saved in:
Bibliographic Details
Published inTrends in cell biology Vol. 20; no. 4; pp. 177 - 186
Main Authors Hansen, Carsten G, Nichols, Ben J
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Caveolae are ampullate (flask-shaped) invaginations that are abundant in the plasma membrane of many mammalian cell types. Although caveolae are implicated in a wide range of processes including endothelial transcytosis, lipid homeostasis and cellular signalling, a detailed molecular picture of many aspects of their function has been elusive. Until recently, the only extensively characterised protein components of caveolae were the caveolins. Recently, data from several laboratories have demonstrated that a family of four related proteins, termed cavins 1–4, plays key roles in caveolar biogenesis and function. Salient properties of the cavin family include their propensity to form complexes with each other and their different but overlapping tissue distribution. This review summarises recent data on the cavins, and sets them in the context of open questions on the construction and function of caveolae. The discovery of cavins implies that caveolae might have unexpectedly diverse structural properties, in accord with the wide range of functions attributed to these ‘little caves’.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0962-8924
1879-3088
DOI:10.1016/j.tcb.2010.01.005