A New Lumped-Parameter Model of Cerebrospinal Hydrodynamics During the Cardiac Cycle in Healthy Volunteers
Our knowledge of cerebrospinal fluid (CSF) hydrodynamics has been considerably improved with the recent introduction of phase-contrast magnetic resonance imaging (phase-contrast MRI), which can provide CSF and blood flow measurements throughout the cardiac cycle. Key temporal and amplitude parameter...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 54; no. 3; pp. 483 - 491 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 |
DOI | 10.1109/TBME.2006.890492 |
Cover
Summary: | Our knowledge of cerebrospinal fluid (CSF) hydrodynamics has been considerably improved with the recent introduction of phase-contrast magnetic resonance imaging (phase-contrast MRI), which can provide CSF and blood flow measurements throughout the cardiac cycle. Key temporal and amplitude parameters can be calculated at different sites to elucidate the role played by the various CSF compartments during vascular brain expansion. Most of the models reported in the literature do not take into account CSF oscillation during the cardiac cycle and its kinetic energy impact on the brain. We propose a new lumped-parameter compartmental model of CSF and blood flows in healthy subjects during the cardiac cycle. The system was divided into five submodels representing arterial blood, venous blood, ventricular CSF, cranial subarachnoid space, and spinal subarachnoid space. These submodels are connected by resistances and compliances. The model developed was used to reproduce certain functional characteristics observed in seven healthy volunteers, such as the distribution (amplitude and phase shift) of arterial, venous, and CSF flows. The results show a good agreement between measured and simulated intracranial CSF and blood flows |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/TBME.2006.890492 |