Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite

Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo‐thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm wit...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 88; no. 6; pp. 1500 - 1503
Main Authors Dusza, J., Kovalčík, J., Hvizdoš, P., Šajgalík, P., Hnatko, M., Reece, M. J.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Inc 01.06.2005
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo‐thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter‐ and intra‐granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate.
AbstractList Silicon nitride-silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200 degrees to 1450 degrees C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate. [PUBLICATION ABSTRACT]
Silicon nitride-silicon carbide nanocomposite was prepared by an in-situ method that uses C+SiO2 carbothermal reduction during sintering. The material was nearly defect free and consisted of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behaviour was investigated in bending at temperatures from 1200 to 1450 C, under stresses ranging from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix, due to a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate.
Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo‐thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter‐ and intra‐granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate.
Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO 2 carbo‐thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter‐ and intra‐granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200° to 1450°C, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate.
Silicon nitridesilicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process. The developed material is nearly defect free and consists of a silicon nitride matrix with an average grain size of approximately 200 nm with inter- and intra-granular SiC particles with sizes of approximately 150 and 40 nm, respectively. The creep behavior was investigated in bending at temperatures from 1200DG to 1450DGC, under stresses ranking from 50 to 150 MPa in air. The stress exponents are in the interval from 0.8 to 1.28 and the apparent activation energy is 480 kJ/mol. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. This is because of a change of the microstructure and grain boundary chemistry leading to a change of creep mechanism and creep rate.
Author Hvizdoš, P.
Hnatko, M.
Reece, M. J.
Kovalčík, J.
Šajgalík, P.
Dusza, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Dusza
  fullname: Dusza, J.
  email: dusza@imrnov.saske.sk
  organization: Institute of Materials Research, Slovak Academy of Sciences, Košice, Slovakia
– sequence: 2
  givenname: J.
  surname: Kovalčík
  fullname: Kovalčík, J.
  organization: Institute of Materials Research, Slovak Academy of Sciences, Košice, Slovakia
– sequence: 3
  givenname: P.
  surname: Hvizdoš
  fullname: Hvizdoš, P.
  organization: Institute of Materials Research, Slovak Academy of Sciences, Košice, Slovakia
– sequence: 4
  givenname: P.
  surname: Šajgalík
  fullname: Šajgalík, P.
  organization: Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
– sequence: 5
  givenname: M.
  surname: Hnatko
  fullname: Hnatko, M.
  organization: Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
– sequence: 6
  givenname: M. J.
  surname: Reece
  fullname: Reece, M. J.
  organization: Queen Mary, University of London, London, U.K
BookMark eNqNkUtPGzEUhS1EJQLtf4hYdDdTP-KXVKmCNLxKU6ktYml5nDuq04kd7IkI_x5Pglh0U7y5vr7fOfLVOUaHIQZAaExwTcr5tKwJ56SimoiaYsxrjKnS9fYAjV4Hh2iEy3MlFcVH6DjnZWmJVpMR-jwLf2xwsBhPE8B6_BOyz70N_fiX77yLoZr7PvkFVOc2F2puQ3RxtY7Z9_AevWttl-HDSz1Bdxez39Or6vbH5fX07LZyE8l0JbjWjSROyZY7AcQ5kA0AdUw1jjmhsGi40LqlGhhrtJgAl20jnGJiYUGxE_Rx77tO8WEDuTcrnx10nQ0QN9kMOzKp6f9BxRWWEr8FFHrCBvD0H3AZNymUbQ0lUhNFmCyQ2kMuxZwTtGad_MqmJ0OwGVIySzOEsfuoGVIyu5TMtki_7KWPvoOnN-vMzdl0trsXh2rvUHKD7auDTX-NkExycz-_NF_Pb9Q9p9_Md_YMi3-n-w
CODEN JACTAW
CitedBy_id crossref_primary_10_1111_ijac_13903
crossref_primary_10_1016_j_engfracmech_2008_04_020
crossref_primary_10_1016_j_ijrmhm_2008_09_012
crossref_primary_10_1111_j_1551_2916_2005_00956_x
crossref_primary_10_1111_j_1744_7402_2006_02061_x
crossref_primary_10_1111_j_1551_2916_2006_00956_x
crossref_primary_10_3103_S1061386223010028
crossref_primary_10_1016_j_jeurceramsoc_2013_01_008
Cites_doi 10.2109/jcersj.99.974
10.1016/S0955-2219(02)00112-7
10.1002/9780470294628.ch85
10.1111/j.1151-2916.1996.tb07914.x
10.1111/j.1151-2916.1973.tb12520.x
10.1111/j.1151-2916.1971.tb12263.x
10.1111/j.1151-2916.1994.tb04576.x
10.1016/S0955-2219(97)00180-5
10.1016/S0022-3093(00)00081-8
10.1023/A:1017982719694
10.1111/j.1151-2916.1990.tb09803.x
ContentType Journal Article
Copyright Copyright American Ceramic Society Jun 2005
Copyright_xml – notice: Copyright American Ceramic Society Jun 2005
DBID BSCLL
AAYXX
CITATION
7QQ
7SR
8FD
JG9
7TB
FR3
DOI 10.1111/j.1551-2916.2005.00289.x
DatabaseName Istex
CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
Engineering Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Materials Research Database
Materials Research Database

CrossRef
Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1551-2916
EndPage 1503
ExternalDocumentID 854833401
10_1111_j_1551_2916_2005_00289_x
JACE00289
ark_67375_WNG_DBJ8W52K_M
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDBF
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AHEFC
AI.
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
G8K
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PK8
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AITYG
HGLYW
OIG
WTY
AAYXX
CITATION
7QQ
7SR
8FD
ADMHG
JG9
7TB
FR3
ID FETCH-LOGICAL-c4739-6599b71c87f5c6e1cce7bee2c38bc3c6806b5699f29e33b964e57fb6c836dae83
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Fri Aug 16 20:56:33 EDT 2024
Fri Aug 16 10:42:28 EDT 2024
Fri Aug 16 22:02:38 EDT 2024
Thu Oct 10 18:01:11 EDT 2024
Fri Aug 23 00:26:27 EDT 2024
Sat Aug 24 00:57:14 EDT 2024
Wed Jan 17 04:58:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4739-6599b71c87f5c6e1cce7bee2c38bc3c6806b5699f29e33b964e57fb6c836dae83
Notes ark:/67375/WNG-DBJ8W52K-M
ArticleID:JACE00289
istex:ADD9289B228C251653B7078C15CCB9A39C9935BF
This work was realized with the financial support of the Slovak Grant Agency, under the contract No. 2/4173/04, APVT‐51‐049702, of the Royal Society, and of NANOSMART, Centre of Excellence, SAS.
D. J. Green—contributing editor
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 217918137
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_29163792
proquest_miscellaneous_28580770
proquest_miscellaneous_28569430
proquest_journals_217918137
crossref_primary_10_1111_j_1551_2916_2005_00289_x
wiley_primary_10_1111_j_1551_2916_2005_00289_x_JACE00289
istex_primary_ark_67375_WNG_DBJ8W52K_M
PublicationCentury 2000
PublicationDate June 2005
PublicationDateYYYYMMDD 2005-06-01
PublicationDate_xml – month: 06
  year: 2005
  text: June 2005
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2005
Publisher Blackwell Science Inc
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Science Inc
– name: Wiley Subscription Services, Inc
References M. K. Cinibulk, G. Thomas, and S. M. Johnson, "Grain-Boundary-Phase Crystallization and Strength of Silicon Nitride Sintered with YSiAlON Glass,"J. Am. Ceram. Soc., 73, 1606-12 (1990).
P. Šajgalík, M. Hnatko, Z. Lenčeš, P. Warbichler, and F. Hofer, "SiC-Si3N4 Nanocomposite Prepared by the Addition of SiO2+C,"Zeitschrift für Metallkunde, 92 [8] 937-41 (2001).
J. Dusza, P. Šajgalík, M. Steen, and E. Semerad, "Low-Cycle Fatigue Strength Under Step Loading of a Si3N4+SiC Nanocomposite at 1350°C,"J. Mater. Sci., 36, 4469-77 (2001).
G. Pezzotti, T. Wakasugi, T. Nishida, R. Ota, H.-J. Kleebe, and K. Ota, "Chemistry and Inherent Viscosity of Glasses Segregated at Grain Boundaries of Silicon Nitride and Silicon Carbide Ceramics,"J. Non-Cryst. Solids., 271, 79-87 (2000).
H. Klemm, M. Herrmann, and Ch. Schubert, "High-Temperature Properties of Si3N4/SiC Nanocomposites,"Ceram. Eng. Sci. Proc., 21, 713-20 (2000).
M. Herrmann, Ch. Schubert, A. Rendtel, and H. Hübner, "Si3N4/SiC Nanocomposites Materials: I. Fabrication and Mechanical Properties at Room Temperature,"J. Am. Ceram. Soc., 81, 1095-108 (1998).
H. Park, H. Kim, and K. Niihara, "Microstructure and High-Temperature Strength of Si3N4-SiC Nanocomposite,"J. Eur. Ceram. Soc., 18, 907-14 (1988).
F. F. Lange, "Effect of Microstructure on Strength of Si3N4-SiC Composite System,"J. Am. Ceram. Soc., 56, 445-50 (1973).
A. Rendtel and H. Hübner, "Effect of Heat Treatment on Microstructure and Creep Behaviour of Silicon Nitride Based Ceramics,"J. Eur. Ceram. Soc., 22, 2517-25 (2002).
K. Niihara, "New Design Concept of Structural Ceramics-Ceramic Nanocomposites,"J. Ceram. Soc. Jpn., 99, 974-82 (1991).
G. W. Hollemberg, G. R. Terwilliger, and R. S. Gordon, "Calculation of Stresses and Strains in Four-Point Bending Creep Tests,"J. Am. Ceram. Soc., 54, 196-9 (1971).
X. Pan, J. Mayer, and M. Rühle, "Silicon Nitride Based Nanocomposite,"J. Am. Ceram. Soc., 79, 585-90 (1996).
A. Rendtel, H. Hübner, M. Herrmann, and Ch. Shubert, "Si3N4/SiC Nanocomposite Materials: II, Hot Strength, Creep, and Oxidation Resistance,"J. Am. Ceram. Soc., 81, 1109-20 (1998).
T. Rouxel, F. Wakai, and S. Sakguchi, "R-Curve Behavior and Stable Crack Growth at Elevated Temperatures (1500°-1650°C) in a Si3N4/SiC Nanocomposite,"J. Am. Ceram. Soc., 77, 3237-43 (1994).
1990; 73
2001; 92
1971; 54
1988; 18
1973; 56
1991; 99
2000; 21
2002; 22
1994; 77
2000; 271
1998; 81
1993
1996; 79
2001; 36
Šajgalík P. (e_1_2_6_14_2) 2001; 92
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_4_2
Herrmann M. (e_1_2_6_9_2) 1998; 81
e_1_2_6_3_2
Rendtel A. (e_1_2_6_6_2) 1998; 81
e_1_2_6_5_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_17_2
Hoffmann M. J. (e_1_2_6_2_2) 1993
e_1_2_6_15_2
References_xml – volume: 73
  start-page: 1606
  year: 1990
  end-page: 12
  article-title: Grain‐Boundary‐Phase Crystallization and Strength of Silicon Nitride Sintered with YSiAlON Glass
  publication-title: J. Am. Ceram. Soc.
– volume: 79
  start-page: 585
  year: 1996
  end-page: 90
  article-title: Silicon Nitride Based Nanocomposite
  publication-title: J. Am. Ceram. Soc.
– volume: 54
  start-page: 196
  year: 1971
  end-page: 9
  article-title: Calculation of Stresses and Strains in Four‐Point Bending Creep Tests
  publication-title: J. Am. Ceram. Soc.
– volume: 81
  start-page: 1109
  year: 1998
  end-page: 20
  article-title: Si N /SiC Nanocomposite Materials
  publication-title: II, Hot Strength, Creep, and Oxidation Resistance
– start-page: 233
  year: 1993
  end-page: 44
– volume: 99
  start-page: 974
  year: 1991
  end-page: 82
  article-title: New Design Concept of Structural Ceramics‐Ceramic Nanocomposites
  publication-title: J. Ceram. Soc. Jpn.
– volume: 36
  start-page: 4469
  year: 2001
  end-page: 77
  article-title: Low‐Cycle Fatigue Strength Under Step Loading of a Si N +SiC Nanocomposite at 1350°C
  publication-title: J. Mater. Sci.
– volume: 56
  start-page: 445
  year: 1973
  end-page: 50
  article-title: Effect of Microstructure on Strength of Si N –SiC Composite System
  publication-title: J. Am. Ceram. Soc.
– volume: 21
  start-page: 713
  year: 2000
  end-page: 20
  article-title: High–Temperature Properties of Si N /SiC Nanocomposites
  publication-title: Ceram. Eng. Sci. Proc.
– volume: 92
  start-page: 937
  issue: [8]
  year: 2001
  end-page: 41
  article-title: SiC–Si N Nanocomposite Prepared by the Addition of SiO +C
  publication-title: Zeitschrift für Metallkunde
– volume: 77
  start-page: 3237
  year: 1994
  end-page: 43
  article-title: R‐Curve Behavior and Stable Crack Growth at Elevated Temperatures (1500°–1650°C) in a Si N /SiC Nanocomposite
  publication-title: J. Am. Ceram. Soc.
– volume: 81
  start-page: 1095
  year: 1998
  end-page: 108
  article-title: Si N /SiC Nanocomposites Materials
  publication-title: I. Fabrication and Mechanical Properties at Room Temperature
– volume: 271
  start-page: 79
  year: 2000
  end-page: 87
  article-title: Chemistry and Inherent Viscosity of Glasses Segregated at Grain Boundaries of Silicon Nitride and Silicon Carbide Ceramics
  publication-title: J. Non-Cryst. Solids.
– volume: 22
  start-page: 2517
  year: 2002
  end-page: 25
  article-title: Effect of Heat Treatment on Microstructure and Creep Behaviour of Silicon Nitride Based Ceramics
  publication-title: J. Eur. Ceram. Soc.
– volume: 18
  start-page: 907
  year: 1988
  end-page: 14
  article-title: Microstructure and High‐Temperature Strength of Si N –SiC Nanocomposite
  publication-title: J. Eur. Ceram. Soc.
– ident: e_1_2_6_5_2
  doi: 10.2109/jcersj.99.974
– ident: e_1_2_6_16_2
– ident: e_1_2_6_13_2
  doi: 10.1016/S0955-2219(02)00112-7
– ident: e_1_2_6_7_2
  doi: 10.1002/9780470294628.ch85
– ident: e_1_2_6_11_2
  doi: 10.1111/j.1151-2916.1996.tb07914.x
– volume: 92
  start-page: 937
  issue: 8
  year: 2001
  ident: e_1_2_6_14_2
  article-title: SiC–Si3N4 Nanocomposite Prepared by the Addition of SiO2+C
  publication-title: Zeitschrift für Metallkunde
  contributor:
    fullname: Šajgalík P.
– ident: e_1_2_6_4_2
  doi: 10.1111/j.1151-2916.1973.tb12520.x
– ident: e_1_2_6_15_2
  doi: 10.1111/j.1151-2916.1971.tb12263.x
– volume: 81
  start-page: 1109
  year: 1998
  ident: e_1_2_6_6_2
  article-title: Si3N4/SiC Nanocomposite Materials
  publication-title: II, Hot Strength, Creep, and Oxidation Resistance
  contributor:
    fullname: Rendtel A.
– ident: e_1_2_6_8_2
  doi: 10.1111/j.1151-2916.1994.tb04576.x
– volume: 81
  start-page: 1095
  year: 1998
  ident: e_1_2_6_9_2
  article-title: Si3N4/SiC Nanocomposites Materials
  publication-title: I. Fabrication and Mechanical Properties at Room Temperature
  contributor:
    fullname: Herrmann M.
– ident: e_1_2_6_10_2
  doi: 10.1016/S0955-2219(97)00180-5
– ident: e_1_2_6_17_2
  doi: 10.1016/S0022-3093(00)00081-8
– start-page: 233
  volume-title: Tailoring of Mechanical Properties of Si3N4 Ceramics
  year: 1993
  ident: e_1_2_6_2_2
  contributor:
    fullname: Hoffmann M. J.
– ident: e_1_2_6_12_2
  doi: 10.1023/A:1017982719694
– ident: e_1_2_6_3_2
  doi: 10.1111/j.1151-2916.1990.tb09803.x
SSID ssj0001984
Score 1.935581
Snippet Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo‐thermal reduction during the sintering process....
Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO 2 carbo‐thermal reduction during the sintering...
Silicon nitride-silicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process....
Silicon nitride-silicon carbide nanocomposite was prepared by an in-situ method that uses C+SiO2 carbothermal reduction during sintering. The material was...
Silicon nitridesilicon carbide nanocomposite has been prepared by an in situ method that utilizes C+SiO2 carbo-thermal reduction during the sintering process....
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1500
SubjectTerms Ceramic sintering
Creep tests
Grain boundaries
Microstructure
Nanostructured ceramics
Silicon carbide
Title Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite
URI https://api.istex.fr/ark:/67375/WNG-DBJ8W52K-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1551-2916.2005.00289.x
https://www.proquest.com/docview/217918137
https://search.proquest.com/docview/28569430
https://search.proquest.com/docview/28580770
https://search.proquest.com/docview/29163792
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQcoEDb0RYHjkgbqmSOH7d2C1dVkXbw8Kye7NiZyKqonTVpNKKEz-B38gvYcZpS4vQCiFujjKO4hmP57M9_szYq6r0qjBVmtS5g6QoZZnoTECi6joTnjayDJ0dPpnI47NifCEuVvlPdBam54fYLLiRZ4Txmhy8dO2uk2O0T3LEN5ulEW0GhCeJV4_w0ekvJimcWxdrJEwUcbtJPX_80E6kuklKv9qBodtgNkSjo7tstm5Hn4QyGyw7N_Bff6N4_D8NvcfurEBrfND3svvsBjQP2O0tKkN8-jRtl71M-5C9GTWfQ2pBPFwAXMan0BJObbr4w_QL9r3mx7fvk2m3mFaApUOMpFWM4_ycEtwpiwwesbOj0cfhcbK6qyHxheKUQWOMU5nXqhZeQuY9KAeQe66d517qVDohjalzA5w7IwsQqnbSay6rEjR_zPaaeQNPWIwAh1c4j_MCQ2eaaQNClpU0GVYu0XQRy9Z2sZc9JYfdmsqgrizpii7YFDboyl5F7HUw4KZCuZhRSpsS9nzyzr49HOtzkb-3JxHbX1vYrry5tTlxuOqMq4i93LxFN6S9lbKB-RJFNLau4Om1EjpV6joJ_GuuTB4xHfrDX7fOjg-Go1B--u9V99mtQEsbVpiesb1usYTnCLg69yK40k-PeBwx
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF6h9gAc-EeYAvUBcXNke71_N9o0JaRNDqWlva3s9VhErZwqcaSKE4_AM_IkzKyTkCBUIcRtLc9anpmdnW9nZ2cZe1vmTmWmjKMqLSDKcplHOhEQqapKhKONLENnh4cj2T_LBhfiYnEdEJ2FaetDrAJuZBl-viYDp4D0ppWju49SBDir2Ig2HQSU22j9gqz04ORXLSlcXWdLLExF4jbTev74pQ1ftU1iv9kAoutw1vujw4fsaslJm4Zy2Zk3Rcd9_a3I439i9RF7sMCt4V470B6zO1A_YffXqhni0-fxbN7SzJ6y9736i88uCLtTgOvwBGYEVesm_DS-wuFX__j2fTRupuMSsLWPzrQMcaqfUI47JZLBM3Z22Dvt9qPFdQ2RyxSnJBpjCpU4rSrhJCTOgSoAUsd14biTOpaFkMZUqQHOCyMzEKoqpNNcljlo_pxt1ZMaXrAQMQ4vcSnnBHrPONEGhMxLaRLsnKPuApYsFWOv26ocdm01g7KyJCu6Y1NYLyt7E7B3XoOrDvn0krLalLDnow_2YH-gz0V6ZIcB21mq2C4MemZTKuOqE64Ctrt6i5ZI2yt5DZM5kmjkLuPxrRQ6Vuo2CvxrrkwaMO0HxF9zZwd73Z5vv_z3rrvsbv90eGyPP46Odtg9X6XWB5xesa1mOofXiL-a4o23q59o8SBR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJiF4GN8iG2N5QLylSuL4621bPxgdq9BgbG9W7FxE1Smt2lSaeOJP4G_kL9nZaUuL0IQQb45yjnJ3Pt_v7POZkDdFbkWmijgqUwNRlvM8kgmDSJRlwqzbyFLu7PDZgJ9cZP0rdrXIf3JnYZr6EKsFN2cZfr52Bj4pyk0jR28fpYhvVksjUrUQT25nnKYuEOuc_yolhcF1toTCrkbcZlbPH7-04aq2ndRvNnDoOpr17qj3iIyWjDRZKKPWvDYt--23Go__h9PHZGeBWsOjZpg9IfegekoertUyxKcvw9m8oZk9I4fd6qvPLQjbU4BJeA4zB1SrOvw0vMbBV_38_mMwrKfDArB1jK60CHGiH7sMd5dGBs_JRa_7uX0SLS5riGwmqEuhUcqIxEpRMsshsRaEAUgtlcZSy2XMDeNKlakCSo3iGTBRGm4l5UUOkr4gW9W4gpckRIRDCwzkLEPfGSdSAeN5wVWCnXNUXUCSpV70pKnJoddiGZSVdrJyN2wy7WWlbwLy1itw1SGfjlxOm2D6cvBOd4778pKlp_osIHtLDeuFOc906oq4yoSKgBys3qIdus2VvILxHEkkcpfR-E4KGQtxFwX-NRUqDYj04-GvudP9o3bXt3f_vesBuf-x09Mf3g9O98gDX6LWrza9Ilv1dA77CL5q89pb1S3byR8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Creep+Resistant+Silicon%E2%80%90Nitride%E2%80%90Based+Nanocomposite&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Dusza%2C+J.&rft.au=Koval%C4%8D%C3%ADk%2C+J.&rft.au=Hvizdo%C5%A1%2C+P.&rft.au=%C5%A0ajgal%C3%ADk%2C+P.&rft.date=2005-06-01&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=88&rft.issue=6&rft.spage=1500&rft.epage=1503&rft_id=info:doi/10.1111%2Fj.1551-2916.2005.00289.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1551_2916_2005_00289_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon