Recording of EEG during fMRI experiments: patient safety

The acquisition of electroencephalograms (EEG) during functional magnetic resonance imaging (fMRI) experiments raises important practical issues of patient safety. The presence of electrical wires connected to the patient in rapidly changing magnetic fields results in currents flowing through the pa...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 38; no. 6; p. 943
Main Authors Lemieux, L, Allen, P J, Franconi, F, Symms, M R, Fish, D R
Format Journal Article
LanguageEnglish
Published United States 01.12.1997
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:The acquisition of electroencephalograms (EEG) during functional magnetic resonance imaging (fMRI) experiments raises important practical issues of patient safety. The presence of electrical wires connected to the patient in rapidly changing magnetic fields results in currents flowing through the patient due to induced electromotive forces (EMF), by three possible mechanisms: fixed loop in rapidly changing gradient fields; fixed loop in a RF electromagnetic field; moving loop in the static magnetic field. RF-induced EMFs were identified as the most important potential hazard. We calculated the minimum value of current-limiting resistance to be fitted in each EEG electrode lead for a representative worst case loop, and measured RF magnetic field intensity and heating in a specific type of current-limiting resistors. The results show that electrode resistance should be > or = 13 k(omega) for our setup. The methodology presented is general and can be useful for other centers.
ISSN:0740-3194
DOI:10.1002/mrm.1910380614