Modeling and Testing of the Sandwich Composite Manhole Cover Designed for Pedestrian Networks

This research concerning the topic, pursues the design, manufacturing, analysis and testing of the manhole cover that may be used in pedestrian networks. Although there are certain commercially available manhole covers made of glass-reinforced composites, there are a few papers published related to...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 12; no. 7; p. 1114
Main Authors Itu, Calin, Cerbu, Camelia, Galatanu, Teofil-Florin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 03.04.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This research concerning the topic, pursues the design, manufacturing, analysis and testing of the manhole cover that may be used in pedestrian networks. Although there are certain commercially available manhole covers made of glass-reinforced composites, there are a few papers published related to the modelling, simulation and mechanical testing of such parts. Herein, the manhole cover is made of the sandwich composite. The novelty of this kind of cover is to use an oriented strand board (OSB) as the core between two sides containing layers, which are reinforced with glass fibers. The OSB core leads to the increase of the stiffness-weight ratio. The paper describes the materials corresponding to the layers of the composite cover, geometry of the cover, technology used to manufacture the bending specimens and cover tested. Specimens made of materials that correspond to each layer of the cover, are tested in bending in order to determine their mechanical properties (flexural strength and flexural modulus). Bending tests and testing of the cover are also described. The composite manhole cover is also analysed by the finite element method to obtain the state of stresses and strains. The strains of the manhole cover are experimentally measured by using the tensometric method. Finally, comparing the strains with the strains experimentally measured validates the numerical simulation model.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma12071114