The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster

In a recent study, we reported that the combined average mutation rate of 10 di-, 6 tri-, and 8 tetranucleotide repeats in Drosophila melanogaster was 6.3 x 10(-6) mutations per locus per generation, a rate substantially below that of microsatellite repeat units in mammals studied to date (range = 1...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology and evolution Vol. 15; no. 12; pp. 1751 - 1760
Main Authors Schug, M D, Hutter, C M, Wetterstrand, K A, Gaudette, M S, Mackay, T F, Aquadro, C F
Format Journal Article
LanguageEnglish
Published United States 01.12.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In a recent study, we reported that the combined average mutation rate of 10 di-, 6 tri-, and 8 tetranucleotide repeats in Drosophila melanogaster was 6.3 x 10(-6) mutations per locus per generation, a rate substantially below that of microsatellite repeat units in mammals studied to date (range = 10(-2)-10(-5) per locus per generation). To obtain a more precise estimate of mutation rate for dinucleotide repeat motifs alone, we assayed 39 new dinucleotide repeat microsatellite loci in the mutation accumulation lines from our earlier study. Our estimate of mutation rate for a total of 49 dinucleotide repeats is 9.3 x 10(-6) per locus per generation, only slightly higher than the estimate from our earlier study. We also estimated the relative difference in microsatellite mutation rate among di-, tri-, and tetranucleotide repeats in the genome of D. melanogaster using a method based on population variation, and we found that tri- and tetranucleotide repeats mutate at rates 6.4 and 8.4 times slower than that of dinucleotide repeats, respectively. The slower mutation rates of tri- and tetranucleotide repeats appear to be associated with a relatively short repeat unit length of these repeat motifs in the genome of D. melanogaster. A positive correlation between repeat unit length and allelic variation suggests that mutation rate increases as the repeat unit lengths of microsatellites increase.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0737-4038
1537-1719
DOI:10.1093/oxfordjournals.molbev.a025901