A phantom based laser marking workflow to visually assess geometric image distortion in magnetic resonance guided radiotherapy

Magnetic resonance (MR)-only workflows require quality assurance due to potential dosimetric impacts of using geometry distorted MR images in radiotherapy planning. MR-visible silicone-based fiducials were arranged in regular 3D structures to cover extended imaging volumes. The scanner’s patient mar...

Full description

Saved in:
Bibliographic Details
Published inPhysics and imaging in radiation oncology Vol. 17; pp. 95 - 99
Main Authors Drobnitzky, Matthias, vom Endt, Axel, Dewdney, Andrew
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Magnetic resonance (MR)-only workflows require quality assurance due to potential dosimetric impacts of using geometry distorted MR images in radiotherapy planning. MR-visible silicone-based fiducials were arranged in regular 3D structures to cover extended imaging volumes. The scanner’s patient marking workflow with a 2-axes movable laser bridge allowed to visually check geometric distortions of each MR reconstructed fiducial against its true position in 3D space. A measurement resolution and uncertainty of the order of 0.5 mm in sagittal and coronal, and 1 mm in transversal direction was found. The proposed workflow required 1 min of evaluation time per fiducial position, and a 9 min 3D MR volume acquisition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-6316
2405-6316
DOI:10.1016/j.phro.2021.01.012