Computing Semantic Similarity of Concepts in Knowledge Graphs

This paper presents a method for measuring the semantic similarity between concepts in Knowledge Graphs (KGs) such as WordNet and DBpedia. Previous work on semantic similarity methods have focused on either the structure of the semantic network between concepts (e.g., path length and depth), or only...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 29; no. 1; pp. 72 - 85
Main Authors Ganggao Zhu, Iglesias, Carlos A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a method for measuring the semantic similarity between concepts in Knowledge Graphs (KGs) such as WordNet and DBpedia. Previous work on semantic similarity methods have focused on either the structure of the semantic network between concepts (e.g., path length and depth), or only on the Information Content (IC) of concepts. We propose a semantic similarity method, namely wpath, to combine these two approaches, using IC to weight the shortest path length between concepts. Conventional corpus-based IC is computed from the distributions of concepts over textual corpus, which is required to prepare a domain corpus containing annotated concepts and has high computational cost. As instances are already extracted from textual corpus and annotated by concepts in KGs, graph-based IC is proposed to compute IC based on the distributions of concepts over instances. Through experiments performed on well known word similarity datasets, we show that the wpath semantic similarity method has produced a statistically significant improvement over other semantic similarity methods. Moreover, in a real category classification evaluation, the wpath method has shown the best performance in terms of accuracy and F score.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2016.2610428