Assessing the reliability and cross-sectional and longitudinal validity of fifteen bioelectrical impedance analysis devices

The purpose of this investigation was to expand upon the limited existing research examining the test–retest reliability, cross-sectional validity and longitudinal validity of a sample of bioelectrical impedance analysis (BIA) devices as compared with a laboratory four-compartment (4C) model. Sevent...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of nutrition Vol. 130; no. 5; pp. 827 - 840
Main Authors Siedler, Madelin R., Rodriguez, Christian, Stratton, Matthew T., Harty, Patrick S., Keith, Dale S., Green, Jacob J., Boykin, Jake R., White, Sarah J., Williams, Abegale D., DeHaven, Brielle, Tinsley, Grant M.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 14.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The purpose of this investigation was to expand upon the limited existing research examining the test–retest reliability, cross-sectional validity and longitudinal validity of a sample of bioelectrical impedance analysis (BIA) devices as compared with a laboratory four-compartment (4C) model. Seventy-three healthy participants aged 19–50 years were assessed by each of fifteen BIA devices, with resulting body fat percentage estimates compared with a 4C model utilising air displacement plethysmography, dual-energy X-ray absorptiometry and bioimpedance spectroscopy. A subset of thirty-seven participants returned for a second visit 12–16 weeks later and were included in an analysis of longitudinal validity. The sample of devices included fourteen consumer-grade and one research-grade model in a variety of configurations: hand-to-hand, foot-to-foot and bilateral hand-to-foot (octapolar). BIA devices demonstrated high reliability, with precision error ranging from 0·0 to 0·49 %. Cross-sectional validity varied, with constant error relative to the 4C model ranging from −3·5 (sd 4·1) % to 11·7 (sd 4·7) %, standard error of the estimate values of 3·1–7·5 % and Lin’s concordance correlation coefficients (CCC) of 0·48–0·94. For longitudinal validity, constant error ranged from −0·4 (sd 2·1) % to 1·3 (sd 2·7) %, with standard error of the estimate values of 1·7–2·6 % and Lin’s CCC of 0·37–0·78. While performance varied widely across the sample investigated, select models of BIA devices (particularly octapolar and select foot-to-foot devices) may hold potential utility for the tracking of body composition over time, particularly in contexts in which the purchase or use of a research-grade device is infeasible.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0007-1145
1475-2662
DOI:10.1017/S0007114522003749