Multiple QTL Mapping in Autopolyploids: A Random-Effect Model Approach with Application in a Hexaploid Sweetpotato Full-Sib Population
Abstract Genetic analysis in autopolyploids is a very complicated subject due to the enormous number of genotypes at a locus that needs to be considered. For instance, the number of... In developing countries, the sweetpotato, Ipomoea batatas (L.) Lam. (2n=6x=90), is an important autopolyploid speci...
Saved in:
Published in | Genetics (Austin) Vol. 215; no. 3; pp. 579 - 595 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.07.2020
Genetics Society of America |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
Genetic analysis in autopolyploids is a very complicated subject due to the enormous number of genotypes at a locus that needs to be considered. For instance, the number of...
In developing countries, the sweetpotato, Ipomoea batatas (L.) Lam. (2n=6x=90), is an important autopolyploid species, both socially and economically. However, quantitative trait loci (QTL) mapping has remained limited due to its genetic complexity. Current fixed-effect models can fit only a single QTL and are generally hard to interpret. Here, we report the use of a random-effect model approach to map multiple QTL based on score statistics in a sweetpotato biparental population (‘Beauregard’ × ‘Tanzania’) with 315 full-sibs. Phenotypic data were collected for eight yield component traits in six environments in Peru, and jointly adjusted means were obtained using mixed-effect models. An integrated linkage map consisting of 30,684 markers distributed along 15 linkage groups (LGs) was used to obtain the genotype conditional probabilities of putative QTL at every centiMorgan position. Multiple interval mapping was performed using our R package QTLpoly and detected a total of 13 QTL, ranging from none to four QTL per trait, which explained up to 55% of the total variance. Some regions, such as those on LGs 3 and 15, were consistently detected among root number and yield traits, and provided a basis for candidate gene search. In addition, some QTL were found to affect commercial and noncommercial root traits distinctly. Further best linear unbiased predictions were decomposed into additive allele effects and were used to compute multiple QTL-based breeding values for selection. Together with quantitative genotyping and its appropriate usage in linkage analyses, this QTL mapping methodology will facilitate the use of genomic tools in sweetpotato breeding as well as in other autopolyploids. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ISSN: | 1943-2631 0016-6731 1943-2631 |
DOI: | 10.1534/genetics.120.303080 |