INMAP, a novel truncated version of POLR3B, represses AP-1 and p53 transcriptional activity

INMAP was first identified as an interphase nucleus and mitotic apparatus-associated protein that plays essential roles in the formation of the spindle and cell-cycle progression. Here, we report that INMAP might be conserved from prokaryotes to humans, is a truncated version of the RNA polymerase I...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular biochemistry Vol. 374; no. 1-2; pp. 81 - 89
Main Authors Yunlei, Zhou, Zhe, Chen, Yan, Lei, Pengcheng, Wang, Yanbo, Zheng, Le, Sun, Qianjin, Liang
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.02.2013
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:INMAP was first identified as an interphase nucleus and mitotic apparatus-associated protein that plays essential roles in the formation of the spindle and cell-cycle progression. Here, we report that INMAP might be conserved from prokaryotes to humans, is a truncated version of the RNA polymerase III subunit B POLR3B, and is up-regulated in several human cancer cell lines including HeLa, Bel-7402, HepG2 and BGC-823. Deletion analysis revealed that the 209–290 amino-acid region is necessary for the punctate distribution of INMAP in the nucleus. Furthermore, over-expression of INMAP inhibited the transcriptional activities of p53 and AP-1 in a dose-dependent manner. These results suggest that INMAP may function through the p53 and AP-1 pathways, thus providing a possible link of its activity with tumourigenesis. Integrating our data and those in previous studies, it can be concluded that INMAP plays dual functional roles in the coordination of mitotic kinetics with gene expression as well as in cell-fate determination and proliferation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0300-8177
1573-4919
DOI:10.1007/s11010-012-1507-4