Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway
Definitive endoderm differentiation is crucial for generating respiratory and gastrointestinal organs including pancreas and liver. However, whether epigenetic regulation contributes to this process is unknown. Here, we show that the H3K27me3 demethylases KDM6A and KDM6B play an important role in en...
Saved in:
Published in | Cell research Vol. 23; no. 1; pp. 122 - 130 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Definitive endoderm differentiation is crucial for generating respiratory and gastrointestinal organs including pancreas and liver. However, whether epigenetic regulation contributes to this process is unknown. Here, we show that the H3K27me3 demethylases KDM6A and KDM6B play an important role in endoderm differentiation from human ESCs. Knockdown of KDM6A or KDM6B impairs endoderm differentiation, which can be rescued by sequential treatment with WNT agonist and antagonist. KDM6A and KDM6B contribute to the activation of WNT3 and DKK1 at different differentiation stages when WNT3 and DKK1 are required for mesendoderm and definitive en- doderm differentiation, respectively. Our study not only uncovers an important role of the H3K27me3 demethylases in definitive endoderm differentiation, but also reveals that they achieve this through modulating the WNT signaling pathway. |
---|---|
Bibliography: | KDM6A/KDM6B; definitive endoderm differentiation; WNT pathway regulation 31-1568/Q Definitive endoderm differentiation is crucial for generating respiratory and gastrointestinal organs including pancreas and liver. However, whether epigenetic regulation contributes to this process is unknown. Here, we show that the H3K27me3 demethylases KDM6A and KDM6B play an important role in endoderm differentiation from human ESCs. Knockdown of KDM6A or KDM6B impairs endoderm differentiation, which can be rescued by sequential treatment with WNT agonist and antagonist. KDM6A and KDM6B contribute to the activation of WNT3 and DKK1 at different differentiation stages when WNT3 and DKK1 are required for mesendoderm and definitive en- doderm differentiation, respectively. Our study not only uncovers an important role of the H3K27me3 demethylases in definitive endoderm differentiation, but also reveals that they achieve this through modulating the WNT signaling pathway. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1001-0602 1748-7838 1748-7838 |
DOI: | 10.1038/cr.2012.119 |