Industrial-Scale Production of Mycotoxin Binder from the Red Yeast Sporidiobolus pararoseus KM281507

Red yeast Sporidiobolus pararoseus KM281507 has been recognized as a potential feed additive. Beyond their nutritional value (carotenoids and lipids), red yeast cells (RYCs) containing high levels of β-glucan can bind mycotoxins. This study investigated the industrial feasibility of the large-scale...

Full description

Saved in:
Bibliographic Details
Published inJournal of fungi (Basel) Vol. 8; no. 4; p. 353
Main Authors Tapingkae, Wanaporn, Srinual, Orranee, Lumsangkul, Chompunut, Doan, Hien Van, Chiang, Hsin-I, Manowattana, Atchara, Boonchuay, Pinpanit, Chaiyaso, Thanongsak
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.03.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Red yeast Sporidiobolus pararoseus KM281507 has been recognized as a potential feed additive. Beyond their nutritional value (carotenoids and lipids), red yeast cells (RYCs) containing high levels of β-glucan can bind mycotoxins. This study investigated the industrial feasibility of the large-scale production of RYCs, along with their ability to act as a mycotoxin binder. Under a semi-controlled pH condition in a 300 L bioreactor, 28.70-g/L biomass, 8.67-g/L lipids, and 96.10-mg/L total carotenoids were obtained, and the RYCs were found to contain 5.73% (w/w) β-glucan. The encapsulated RYC was in vitro tested for its mycotoxin adsorption capacity, including for aflatoxin B1 (AFB1), zearalenone (ZEA), ochratoxin A (OTA), T-2 toxin (T-2) and deoxynivalenol (DON). The RYCs had the highest binding capacity for OTA and T-2 at concentrations of 0.31–1.25 and 0.31–2.5 µg/mL, respectively. The mycotoxin adsorption capacity was further tested using a gastrointestinal poultry model. The adsorption capacities of the RYCs and a commercial mycotoxin binder (CMB) were comparable. The RYCs not only are rich in lipids and carotenoids but also play an important role in mycotoxin binding. Since the industrial-scale production and downstream processing of RYCs were successfully demonstrated, RYCs could be applied as possible feed additives.
AbstractList Red yeast Sporidiobolus pararoseus KM281507 has been recognized as a potential feed additive. Beyond their nutritional value (carotenoids and lipids), red yeast cells (RYCs) containing high levels of β-glucan can bind mycotoxins. This study investigated the industrial feasibility of the large-scale production of RYCs, along with their ability to act as a mycotoxin binder. Under a semi-controlled pH condition in a 300 L bioreactor, 28.70-g/L biomass, 8.67-g/L lipids, and 96.10-mg/L total carotenoids were obtained, and the RYCs were found to contain 5.73% (w/w) β-glucan. The encapsulated RYC was in vitro tested for its mycotoxin adsorption capacity, including for aflatoxin B1 (AFB1), zearalenone (ZEA), ochratoxin A (OTA), T-2 toxin (T-2) and deoxynivalenol (DON). The RYCs had the highest binding capacity for OTA and T-2 at concentrations of 0.31–1.25 and 0.31–2.5 µg/mL, respectively. The mycotoxin adsorption capacity was further tested using a gastrointestinal poultry model. The adsorption capacities of the RYCs and a commercial mycotoxin binder (CMB) were comparable. The RYCs not only are rich in lipids and carotenoids but also play an important role in mycotoxin binding. Since the industrial-scale production and downstream processing of RYCs were successfully demonstrated, RYCs could be applied as possible feed additives.
Red yeast KM281507 has been recognized as a potential feed additive. Beyond their nutritional value (carotenoids and lipids), red yeast cells (RYCs) containing high levels of β-glucan can bind mycotoxins. This study investigated the industrial feasibility of the large-scale production of RYCs, along with their ability to act as a mycotoxin binder. Under a semi-controlled pH condition in a 300 L bioreactor, 28.70-g/L biomass, 8.67-g/L lipids, and 96.10-mg/L total carotenoids were obtained, and the RYCs were found to contain 5.73% ( / ) β-glucan. The encapsulated RYC was in vitro tested for its mycotoxin adsorption capacity, including for aflatoxin B1 (AFB1), zearalenone (ZEA), ochratoxin A (OTA), T-2 toxin (T-2) and deoxynivalenol (DON). The RYCs had the highest binding capacity for OTA and T-2 at concentrations of 0.31-1.25 and 0.31-2.5 µg/mL, respectively. The mycotoxin adsorption capacity was further tested using a gastrointestinal poultry model. The adsorption capacities of the RYCs and a commercial mycotoxin binder (CMB) were comparable. The RYCs not only are rich in lipids and carotenoids but also play an important role in mycotoxin binding. Since the industrial-scale production and downstream processing of RYCs were successfully demonstrated, RYCs could be applied as possible feed additives.
Red yeast Sporidiobolus pararoseus KM281507 has been recognized as a potential feed additive. Beyond their nutritional value (carotenoids and lipids), red yeast cells (RYCs) containing high levels of β-glucan can bind mycotoxins. This study investigated the industrial feasibility of the large-scale production of RYCs, along with their ability to act as a mycotoxin binder. Under a semi-controlled pH condition in a 300 L bioreactor, 28.70-g/L biomass, 8.67-g/L lipids, and 96.10-mg/L total carotenoids were obtained, and the RYCs were found to contain 5.73% (w/w) β-glucan. The encapsulated RYC was in vitro tested for its mycotoxin adsorption capacity, including for aflatoxin B1 (AFB1), zearalenone (ZEA), ochratoxin A (OTA), T-2 toxin (T-2) and deoxynivalenol (DON). The RYCs had the highest binding capacity for OTA and T-2 at concentrations of 0.31-1.25 and 0.31-2.5 µg/mL, respectively. The mycotoxin adsorption capacity was further tested using a gastrointestinal poultry model. The adsorption capacities of the RYCs and a commercial mycotoxin binder (CMB) were comparable. The RYCs not only are rich in lipids and carotenoids but also play an important role in mycotoxin binding. Since the industrial-scale production and downstream processing of RYCs were successfully demonstrated, RYCs could be applied as possible feed additives.Red yeast Sporidiobolus pararoseus KM281507 has been recognized as a potential feed additive. Beyond their nutritional value (carotenoids and lipids), red yeast cells (RYCs) containing high levels of β-glucan can bind mycotoxins. This study investigated the industrial feasibility of the large-scale production of RYCs, along with their ability to act as a mycotoxin binder. Under a semi-controlled pH condition in a 300 L bioreactor, 28.70-g/L biomass, 8.67-g/L lipids, and 96.10-mg/L total carotenoids were obtained, and the RYCs were found to contain 5.73% (w/w) β-glucan. The encapsulated RYC was in vitro tested for its mycotoxin adsorption capacity, including for aflatoxin B1 (AFB1), zearalenone (ZEA), ochratoxin A (OTA), T-2 toxin (T-2) and deoxynivalenol (DON). The RYCs had the highest binding capacity for OTA and T-2 at concentrations of 0.31-1.25 and 0.31-2.5 µg/mL, respectively. The mycotoxin adsorption capacity was further tested using a gastrointestinal poultry model. The adsorption capacities of the RYCs and a commercial mycotoxin binder (CMB) were comparable. The RYCs not only are rich in lipids and carotenoids but also play an important role in mycotoxin binding. Since the industrial-scale production and downstream processing of RYCs were successfully demonstrated, RYCs could be applied as possible feed additives.
Red yeast Sporidiobolus pararoseus KM281507 has been recognized as a potential feed additive. Beyond their nutritional value (carotenoids and lipids), red yeast cells (RYCs) containing high levels of β-glucan can bind mycotoxins. This study investigated the industrial feasibility of the large-scale production of RYCs, along with their ability to act as a mycotoxin binder. Under a semi-controlled pH condition in a 300 L bioreactor, 28.70-g/L biomass, 8.67-g/L lipids, and 96.10-mg/L total carotenoids were obtained, and the RYCs were found to contain 5.73% ( w / w ) β-glucan. The encapsulated RYC was in vitro tested for its mycotoxin adsorption capacity, including for aflatoxin B1 (AFB1), zearalenone (ZEA), ochratoxin A (OTA), T-2 toxin (T-2) and deoxynivalenol (DON). The RYCs had the highest binding capacity for OTA and T-2 at concentrations of 0.31–1.25 and 0.31–2.5 µg/mL, respectively. The mycotoxin adsorption capacity was further tested using a gastrointestinal poultry model. The adsorption capacities of the RYCs and a commercial mycotoxin binder (CMB) were comparable. The RYCs not only are rich in lipids and carotenoids but also play an important role in mycotoxin binding. Since the industrial-scale production and downstream processing of RYCs were successfully demonstrated, RYCs could be applied as possible feed additives.
Author Manowattana, Atchara
Chaiyaso, Thanongsak
Boonchuay, Pinpanit
Srinual, Orranee
Chiang, Hsin-I
Lumsangkul, Chompunut
Tapingkae, Wanaporn
Doan, Hien Van
AuthorAffiliation 1 Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; wanaporn.t@cmu.ac.th (W.T.); orranee_sr@cmu.ac.th (O.S.); chompunut.lum@cmu.ac.th (C.L.); hien.d@cmu.ac.th (H.V.D.)
4 Faculty of Arts and Sciences, Western University, Kanchanaburi 71170, Thailand; atchara.ma@western.ac.th
2 Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
3 Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; samchiang@nchu.edu.tw
5 Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; pinpanit_boonchuay@cmu.ac.th
AuthorAffiliation_xml – name: 1 Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; wanaporn.t@cmu.ac.th (W.T.); orranee_sr@cmu.ac.th (O.S.); chompunut.lum@cmu.ac.th (C.L.); hien.d@cmu.ac.th (H.V.D.)
– name: 2 Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
– name: 5 Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; pinpanit_boonchuay@cmu.ac.th
– name: 4 Faculty of Arts and Sciences, Western University, Kanchanaburi 71170, Thailand; atchara.ma@western.ac.th
– name: 3 Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; samchiang@nchu.edu.tw
Author_xml – sequence: 1
  givenname: Wanaporn
  orcidid: 0000-0003-4836-0817
  surname: Tapingkae
  fullname: Tapingkae, Wanaporn
– sequence: 2
  givenname: Orranee
  orcidid: 0000-0003-3657-3268
  surname: Srinual
  fullname: Srinual, Orranee
– sequence: 3
  givenname: Chompunut
  orcidid: 0000-0003-2014-5306
  surname: Lumsangkul
  fullname: Lumsangkul, Chompunut
– sequence: 4
  givenname: Hien Van
  orcidid: 0000-0003-1267-3328
  surname: Doan
  fullname: Doan, Hien Van
– sequence: 5
  givenname: Hsin-I
  orcidid: 0000-0002-2815-4314
  surname: Chiang
  fullname: Chiang, Hsin-I
– sequence: 6
  givenname: Atchara
  surname: Manowattana
  fullname: Manowattana, Atchara
– sequence: 7
  givenname: Pinpanit
  orcidid: 0000-0003-3481-5614
  surname: Boonchuay
  fullname: Boonchuay, Pinpanit
– sequence: 8
  givenname: Thanongsak
  surname: Chaiyaso
  fullname: Chaiyaso, Thanongsak
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35448584$$D View this record in MEDLINE/PubMed
BookMark eNptkltrFTEQgINU7MW--ANkwRcprM7mstm8CLV4OdiiWAV9Ctlkts1hT3JMdsX-e3M8rbbFpwyZb74MM9knOyEGJORJAy8YU_ByGYcOODDBHpA9ykDVLXTfdm7Fu-Qw5yUANKJrlWKPyC4TnHei43vELYKb85S8Getza0asPqXoZjv5GKo4VGdXNk7xlw_Vax8cpmpIcVVNl1h9Rld9R5On6nwdk3c-9nGcc7U2yaSYsYQfzmjXCJCPycPBjBkPr88D8vXtmy8n7-vTj-8WJ8enteWSTnUPHBVKA4zKTkklpTRt01jgohV9yTQNyAEto710QspGqEG6QRra0g4MsgOy2HpdNEu9Tn5l0pWOxus_FzFdaJMmb0fUVlrHnJHIFefMsp5bdKK8hS0DKvvierV1red-hc5imJIZ70jvZoK_1Bfxp1ZAlWh4ETy_FqT4Y8Y86ZXPFsfRBIxz1rQVvIxHCSjos3voMs4plFFtKKqUArmhnt7u6G8rN8ssAGwBW-afEw7a-slsNlka9KNuQG--jP73ZUrJ0b2SG-t_4N9-UsBS
CitedBy_id crossref_primary_10_3389_fmicb_2023_1254569
crossref_primary_10_1016_j_fct_2022_113392
crossref_primary_10_1016_j_lwt_2024_116979
crossref_primary_10_3390_toxins14110729
crossref_primary_10_1002_jsfa_12956
crossref_primary_10_1016_j_toxicon_2024_108038
crossref_primary_10_3390_toxins14100678
crossref_primary_10_1007_s12550_024_00537_2
crossref_primary_10_1016_j_toxicon_2024_108106
crossref_primary_10_1038_s41598_024_73194_1
crossref_primary_10_3390_fishes8120575
crossref_primary_10_1016_j_toxicon_2022_107005
crossref_primary_10_1111_1541_4337_13203
Cites_doi 10.3382/ps.2012-02846
10.1016/j.jhazmat.2020.122087
10.3390/foods9020137
10.3390/toxins11110617
10.5713/ajas.2006.72
10.1038/s41598-018-29194-z
10.1016/j.bcab.2020.101634
10.1042/bj1350031
10.3390/biom11050734
10.3390/microorganisms8071034
10.3390/polym9100529
10.1016/j.clay.2014.06.009
10.3390/ijms22020825
10.3390/molecules26226868
10.1007/s12010-016-2030-y
10.1016/j.enzmictec.2005.11.017
10.1016/j.procbio.2005.02.006
10.1017/S0043933919000187
10.1016/j.foodcont.2021.107919
10.1128/CMR.16.3.497-516.2003
10.3390/toxins13020171
10.1021/bm049775g
10.4081/ijas.2010.e21
10.3390/toxins12070433
10.1016/j.procbio.2013.01.005
10.3920/978-90-8686-884-1
10.1080/10826068.2017.1381620
10.1023/A:1023568319114
10.1016/j.foodchem.2021.130708
10.1111/j.1365-2621.2009.02032.x
10.1080/19440049.2014.970590
10.1016/j.anifeedsci.2017.11.010
10.3390/toxins12100636
10.1111/j.1365-2672.2012.05331.x
10.3390/ani10020238
10.1007/s10295-008-0492-9
10.3390/toxins12010037
10.4315/0362-028X.JFP-11-023
10.1016/j.jff.2019.05.037
10.1051/e3sconf/202126505010
10.1016/j.renene.2020.07.007
10.1053/rvsc.2001.0512
10.3390/toxins7041151
10.1080/10826068.2019.1591985
10.1111/jfpp.14596
10.22358/jafs/70361/2005
10.1155/2014/968215
10.1016/j.biortech.2020.123329
10.1016/j.anifeedsci.2006.08.008
10.1023/A:1023576520932
10.1016/j.biortech.2020.123666
10.1016/j.rvsc.2010.04.011
10.1016/j.micpath.2020.104095
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/jof8040353
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

PubMed
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2309-608X
ExternalDocumentID oai_doaj_org_article_c7cd3da7e49443c3b4ced51c0e63027b
PMC9029514
35448584
10_3390_jof8040353
Genre Journal Article
GeographicLocations Thailand
United States--US
Germany
Bangkok Thailand
GeographicLocations_xml – name: Bangkok Thailand
– name: Germany
– name: Thailand
– name: United States--US
GrantInformation_xml – fundername: National Research Council of Thailand (NRCT)
  grantid: Commercial Production of Mycotoxin Binder from Red Yeast (Sporidiobolus pararoseus)
– fundername: The Functional Food Research Center for Well-being, Chiang Mai University
  grantid: Commercial Production of Mycotoxin Binder from Red Yeast (Sporidiobolus pararoseus)
– fundername: The cluster of the Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University (CMU)
  grantid: Commercial Production of Mycotoxin Binder from Red Yeast (Sporidiobolus pararoseus)
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
LK8
M7P
MODMG
M~E
OK1
OZF
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c472t-b04e9e7a03278979777a611c04565b9e71107fec32b7d577159f7df7a26280ae3
IEDL.DBID BENPR
ISSN 2309-608X
IngestDate Wed Aug 27 01:30:33 EDT 2025
Thu Aug 21 18:20:45 EDT 2025
Fri Jul 11 16:11:56 EDT 2025
Fri Jul 25 11:38:10 EDT 2025
Thu Jan 02 22:55:23 EST 2025
Thu Apr 24 22:56:43 EDT 2025
Tue Jul 01 03:31:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords adsorbents
β-glucan
300 L bioreactor
feed additive
gastrointestinal model
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-b04e9e7a03278979777a611c04565b9e71107fec32b7d577159f7df7a26280ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2815-4314
0000-0003-4836-0817
0000-0003-3481-5614
0000-0003-1267-3328
0000-0003-3657-3268
0000-0003-2014-5306
OpenAccessLink https://www.proquest.com/docview/2652999070?pq-origsite=%requestingapplication%
PMID 35448584
PQID 2652999070
PQPubID 2059559
ParticipantIDs doaj_primary_oai_doaj_org_article_c7cd3da7e49443c3b4ced51c0e63027b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9029514
proquest_miscellaneous_2654281950
proquest_journals_2652999070
pubmed_primary_35448584
crossref_citationtrail_10_3390_jof8040353
crossref_primary_10_3390_jof8040353
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220330
PublicationDateYYYYMMDD 2022-03-30
PublicationDate_xml – month: 3
  year: 2022
  text: 20220330
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of fungi (Basel)
PublicationTitleAlternate J Fungi (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Piotrowska (ref_27) 2015; 7
ref_13
Pizzolitto (ref_28) 2013; 92
Kot (ref_51) 2020; 26
ref_54
Yiannikouris (ref_16) 2004; 5
Banerjee (ref_36) 2020; 309
Chaiyaso (ref_33) 2019; 49
Yang (ref_10) 2020; 389
Chaiyaso (ref_22) 2018; 48
Gallo (ref_55) 2010; 9
ref_17
Frengova (ref_37) 2009; 36
Ballet (ref_18) 2015; 32
Jouany (ref_59) 2005; 8
Jouany (ref_56) 2005; 14
Pi (ref_40) 2018; 8
Matrosova (ref_31) 2021; 265
Dias (ref_42) 2016; 179
ref_61
Allahkarami (ref_52) 2021; 32
ref_25
Didwania (ref_11) 2013; 5
ref_20
ref_63
Luo (ref_41) 2013; 48
Miao (ref_39) 2020; 161
Shurson (ref_32) 2018; 235
ref_26
Wang (ref_34) 2005; 19
(ref_45) 2013; 2013
Yiannikouris (ref_15) 2003; 25
Binder (ref_14) 2007; 133
Elwan (ref_29) 2019; 75
Bilal (ref_21) 2021; 30
Tapingkae (ref_24) 2016; 26
Valduga (ref_44) 2009; 44
Armando (ref_57) 2012; 113
Boudergue (ref_60) 2009; 6
Bennett (ref_9) 2003; 16
ref_35
Ringot (ref_62) 2005; 40
Parlat (ref_12) 2001; 71
Manowattana (ref_23) 2020; 44
Drakopoulos (ref_2) 2021; 125
Choi (ref_30) 2003; 25
Manners (ref_58) 1973; 135
Hu (ref_43) 2006; 39
Greco (ref_5) 2014; 2014
Hassanpour (ref_38) 2020; 313
ref_46
Rawal (ref_53) 2010; 89
ref_3
Haque (ref_1) 2020; 142
Pappas (ref_7) 2014; 99
ref_49
ref_8
Tozlovanu (ref_19) 2011; 74
Boutros (ref_47) 2022; 367
Penney (ref_48) 2019; 59
Eshetu (ref_4) 2016; 25
ref_6
References_xml – volume: 92
  start-page: 1655
  year: 2013
  ident: ref_28
  article-title: Evaluation of Saccharomyces cerevisiae as an antiaflatoxicogenic agent in broiler feedstuffs
  publication-title: Poult. Sci.
  doi: 10.3382/ps.2012-02846
– volume: 389
  start-page: 122087
  year: 2020
  ident: ref_10
  article-title: Effects of mycotoxin-contaminated feed on farm animals
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122087
– ident: ref_8
  doi: 10.3390/foods9020137
– ident: ref_13
  doi: 10.3390/toxins11110617
– volume: 19
  start-page: 72
  year: 2005
  ident: ref_34
  article-title: Effects of different mycotoxin adsorbents on performance, meat characteristics and blood profiles of avian broilers fed mold contaminated corn
  publication-title: Asian-Australas. J. Anim. Sci.
  doi: 10.5713/ajas.2006.72
– volume: 8
  start-page: 10850
  year: 2018
  ident: ref_40
  article-title: Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous β-carotene and cellulase production
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29194-z
– volume: 26
  start-page: 101634
  year: 2020
  ident: ref_51
  article-title: Production of lipids and carotenoids by Rhodotorula gracilis ATCC 10788 yeast in a bioreactor using low-cost wastes
  publication-title: Biocatal. Agric. Biotechnol.
  doi: 10.1016/j.bcab.2020.101634
– volume: 135
  start-page: 31
  year: 1973
  ident: ref_58
  article-title: The structure of a β-(1→ 6)-D-glucan from yeast cell walls
  publication-title: Biochem. J.
  doi: 10.1042/bj1350031
– ident: ref_25
  doi: 10.3390/biom11050734
– ident: ref_61
– volume: 6
  start-page: 22
  year: 2009
  ident: ref_60
  article-title: Review of mycotoxin-detoxifying agents used as feed additives: Mode of action, efficacy and feed/food safety
  publication-title: EFSA Support. Publ.
– ident: ref_50
  doi: 10.3390/microorganisms8071034
– ident: ref_35
  doi: 10.3390/polym9100529
– volume: 8
  start-page: 26
  year: 2005
  ident: ref_59
  article-title: The chemical bonds between mycotoxins and cell wall components of Saccharomyces cerevisiae have been identified
  publication-title: Arch. Zootech.
– volume: 99
  start-page: 48
  year: 2014
  ident: ref_7
  article-title: Bentonite binders in the presence of mycotoxins: Results of in vitro preliminary tests and an in vivo broiler trial
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2014.06.009
– ident: ref_49
  doi: 10.3390/ijms22020825
– ident: ref_63
  doi: 10.3390/molecules26226868
– volume: 179
  start-page: 776
  year: 2016
  ident: ref_42
  article-title: Effect of medium pH on Rhodosporidium toruloides NCYC 921 carotenoid and lipid production evaluated by flow cytometry
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-016-2030-y
– volume: 26
  start-page: 909
  year: 2016
  ident: ref_24
  article-title: Effect of dietary red yeast (Sporidiobolus pararoseus) supplementation on small intestinal histomorphometry of laying hens
  publication-title: J. Anim. Plant Sci.
– volume: 39
  start-page: 586
  year: 2006
  ident: ref_43
  article-title: pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2005.11.017
– volume: 40
  start-page: 3008
  year: 2005
  ident: ref_62
  article-title: Effect of temperature on in vitro ochratoxin A biosorption onto yeast cell wall derivatives
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2005.02.006
– volume: 30
  start-page: 1
  year: 2021
  ident: ref_21
  article-title: Role of yeast and yeast-derived products as feed additives in broiler nutrition
  publication-title: Anim. Biotechnol.
– volume: 75
  start-page: 273
  year: 2019
  ident: ref_29
  article-title: Red yeast (Phaffia rhodozyma) as a source of astaxanthin and its impacts on productive performance and physiological responses of poultry
  publication-title: World’s Poult. Sci. J.
  doi: 10.1017/S0043933919000187
– volume: 125
  start-page: 107919
  year: 2021
  ident: ref_2
  article-title: Raised concerns about the safety of barley grains and straw: A Swiss survey reveals a high diversity of mycotoxins and other fungal metabolites
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2021.107919
– volume: 16
  start-page: 497
  year: 2003
  ident: ref_9
  article-title: Mycotoxins
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.16.3.497-516.2003
– volume: 25
  start-page: 64
  year: 2016
  ident: ref_4
  article-title: An overview on major mycotoxin in animal: Its public health implication, economic impact and control strategies
  publication-title: J. Health Med. Nurs.
– volume: 5
  start-page: 1005
  year: 2013
  ident: ref_11
  article-title: Mycotoxins: A critical review on occurrence and significance
  publication-title: Int. J. Pharm. Pharm. Sci.
– ident: ref_3
  doi: 10.3390/toxins13020171
– volume: 5
  start-page: 2176
  year: 2004
  ident: ref_16
  article-title: Comprehensive conformational study of key interactions involved in zearalenone complexation with β-d-glucans
  publication-title: Biomacromolecules
  doi: 10.1021/bm049775g
– volume: 9
  start-page: 21
  year: 2010
  ident: ref_55
  article-title: In vitro models to evaluate the capacity of different sequestering agents to adsorb aflatoxins
  publication-title: Ital. J. Anim. Sci.
  doi: 10.4081/ijas.2010.e21
– ident: ref_17
  doi: 10.3390/toxins12070433
– volume: 48
  start-page: 195
  year: 2013
  ident: ref_41
  article-title: A pH control strategy for increased β-carotene production during batch fermentation by recombinant industrial wine yeast
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2013.01.005
– ident: ref_6
  doi: 10.3920/978-90-8686-884-1
– volume: 48
  start-page: 13
  year: 2018
  ident: ref_22
  article-title: Enhancement of carotenoids and lipids production by oleaginous red yeast Sporidiobolus pararoseus KM281507
  publication-title: Prep. Biochem. Biotechnol.
  doi: 10.1080/10826068.2017.1381620
– volume: 25
  start-page: 767
  year: 2003
  ident: ref_30
  article-title: Preparation of the red yeast, Xanthophyllomyces dendrorhous, as feed additive with increased availability of astaxanthin
  publication-title: Biotechnol. Lett.
  doi: 10.1023/A:1023568319114
– volume: 367
  start-page: 130708
  year: 2022
  ident: ref_47
  article-title: Comparison of structural differences between yeast β-glucan sourced from different strains of Saccharomyces cerevisiae and processed using proprietary manufacturing processes
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.130708
– volume: 32
  start-page: 00687
  year: 2021
  ident: ref_52
  article-title: Isolation and identification of carotenoid-producing Rhodotorula sp. from Pinaceae forest ecosystems and optimization of in vitro carotenoid production
  publication-title: Biotechnol. Rep.
– volume: 44
  start-page: 2445
  year: 2009
  ident: ref_44
  article-title: Evaluation of the conditions of carotenoids production in a synthetic medium by Sporidiobolus salmonicolor (CBS 2636) in a bioreactor
  publication-title: Int. J. Food Sci. Technol.
  doi: 10.1111/j.1365-2621.2009.02032.x
– volume: 32
  start-page: 604
  year: 2015
  ident: ref_18
  article-title: Assessment and characterisation of yeast-based products intended to mitigate ochratoxin exposure using in vitro and in vivo models
  publication-title: Food Addit. Contam. Part A
  doi: 10.1080/19440049.2014.970590
– volume: 235
  start-page: 60
  year: 2018
  ident: ref_32
  article-title: Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2017.11.010
– ident: ref_20
  doi: 10.3390/toxins12100636
– volume: 113
  start-page: 256
  year: 2012
  ident: ref_57
  article-title: Adsorption of ochratoxin A and zearalenone by potential probiotic Saccharomyces cerevisiae strains and its relation with cell wall thickness
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2012.05331.x
– ident: ref_26
  doi: 10.3390/ani10020238
– volume: 36
  start-page: 163
  year: 2009
  ident: ref_37
  article-title: Carotenoids from Rhodotorula and Phaffia: Yeasts of biotechnological importance
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-008-0492-9
– ident: ref_46
– ident: ref_54
  doi: 10.3390/toxins12010037
– volume: 74
  start-page: 1175
  year: 2011
  ident: ref_19
  article-title: Binding of zearalenone, aflatoxin B1, and ochratoxin A by yeast-based products: A method for quantification of adsorption performance
  publication-title: J. Food Prot.
  doi: 10.4315/0362-028X.JFP-11-023
– volume: 59
  start-page: 129
  year: 2019
  ident: ref_48
  article-title: Pure yeast beta-glucan and two types of yeast cell wall extracts enhance cell migration in porcine intestine model
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2019.05.037
– volume: 265
  start-page: 05010
  year: 2021
  ident: ref_31
  article-title: Red yeast Rhodotorula benthica–substitute feed base for echinoderms in factory cultivation
  publication-title: E3S Web Conf.
  doi: 10.1051/e3sconf/202126505010
– volume: 161
  start-page: 91
  year: 2020
  ident: ref_39
  article-title: Bioconversion of corncob hydrolysate into microbial lipid by an oleaginous yeast Rhodotorula taiwanensis AM2352 for biodiesel production
  publication-title: RENEW Energy
  doi: 10.1016/j.renene.2020.07.007
– volume: 71
  start-page: 207
  year: 2001
  ident: ref_12
  article-title: Biological suppression of aflatoxicosis in Japanese quail (Coturnix coturnix japonica) by dietary addition of yeast (Saccharomyces cerevisiae)
  publication-title: Res. Vet. Sci.
  doi: 10.1053/rvsc.2001.0512
– volume: 7
  start-page: 1151
  year: 2015
  ident: ref_27
  article-title: Saccharomyces cerevisiae cell wall components as tools for ochratoxin a decontamination
  publication-title: Toxins
  doi: 10.3390/toxins7041151
– volume: 49
  start-page: 545
  year: 2019
  ident: ref_33
  article-title: Efficient bioconversion of enzymatic corncob hydrolysate into biomass and lipids by oleaginous yeast Rhodosporidium paludigenum KM281510
  publication-title: Prep. Biochem. Biotechnol.
  doi: 10.1080/10826068.2019.1591985
– volume: 44
  start-page: e14596
  year: 2020
  ident: ref_23
  article-title: Enhancement of β-carotene-rich carotenoid production by a mutant Sporidiobolus pararoseus and stabilization of its antioxidant activity by microencapsulation
  publication-title: J. Food Process. Preserv.
  doi: 10.1111/jfpp.14596
– volume: 14
  start-page: 171
  year: 2005
  ident: ref_56
  article-title: How yeast cell wall components can alleviate mycotoxicosis in animal production and improve the safety of edible animal products
  publication-title: J. Anim. Feed Sci.
  doi: 10.22358/jafs/70361/2005
– volume: 2014
  start-page: 968215
  year: 2014
  ident: ref_5
  article-title: Mycotoxins and mycotoxigenic fungi in poultry feed for food-producing Animals
  publication-title: Sci. World J.
  doi: 10.1155/2014/968215
– volume: 309
  start-page: 123329
  year: 2020
  ident: ref_36
  article-title: Scale-up strategy for yeast single cell oil production for Rhodotorula mucilagenosa IIPL32 from corn cob derived pentosan
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123329
– volume: 133
  start-page: 149
  year: 2007
  ident: ref_14
  article-title: Managing the risk of mycotoxins in modern feed production
  publication-title: Anim. Feed. Sci. Technol.
  doi: 10.1016/j.anifeedsci.2006.08.008
– volume: 25
  start-page: 783
  year: 2003
  ident: ref_15
  article-title: A novel technique to evaluate interactions between Saccharomyces cerevisiae cell wall and mycotoxins: Application to zearalenone
  publication-title: Biotechnol. Lett.
  doi: 10.1023/A:1023576520932
– volume: 313
  start-page: 123666
  year: 2020
  ident: ref_38
  article-title: Scale-up of two-step acid-catalysed glycerol pretreatment for production of oleaginous yeast biomass from sugarcane bagasse by Rhodosporidium toruloides
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123666
– volume: 89
  start-page: 325
  year: 2010
  ident: ref_53
  article-title: Aflatoxin B1 in poultry: Toxicology, metabolism and prevention
  publication-title: Res. Vet. Sci.
  doi: 10.1016/j.rvsc.2010.04.011
– volume: 142
  start-page: 104095
  year: 2020
  ident: ref_1
  article-title: Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2020.104095
– volume: 2013
  start-page: 261
  year: 2013
  ident: ref_45
  article-title: Spent brewer’s yeast and beta-glucans isolated from them as diet components modifying blood lipid metabolism disturbed by an atherogenic diet, lipid metabolism
  publication-title: IntechOpen
SSID ssj0001586993
Score 2.2733526
Snippet Red yeast Sporidiobolus pararoseus KM281507 has been recognized as a potential feed additive. Beyond their nutritional value (carotenoids and lipids), red...
Red yeast KM281507 has been recognized as a potential feed additive. Beyond their nutritional value (carotenoids and lipids), red yeast cells (RYCs) containing...
Red yeast Sporidiobolus pararoseus KM281507 has been recognized as a potential feed additive. Beyond their nutritional value (carotenoids and lipids), red...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 353
SubjectTerms 300 L bioreactor
Adsorbents
Adsorption
Aflatoxin B1
Bioreactors
Carotenoids
Deoxynivalenol
Feasibility studies
feed additive
Feed additives
gastrointestinal model
Glucose
Glycerol
Lipids
Mycotoxins
Nutritive value
Ochratoxin A
Sporidiobolus pararoseus
Yeast
Zearalenone
β-Glucan
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSxxBEG2CePAiiTFxkk3oYC45DM7258wxKy6SsBKigjkN_VGNKzITdIX471M1M667QfCS27Jdh9rX1Vuv6K5XjH0OY7DoYMgVpodcqRhzj0Q5195hsVHEynWvCWcn5vhcfbvQFyujvuhNWC8P3AN3EGyIMjoLqlJKBulVgKjHoQBDV26e_n0x560UU31_cGkw8_Z6pBLr-oOrNpUYsFLLtQzUCfU_xS7_fSS5knWmL9n2QBf5197NV-wFNDtsc9Iipbt_zeLj4I38FMEG_qMXcEWweZv47D60i_bPvOETUkW84dRMwpHy8Z8Q-S8a28NpzPk8zluPMXjLSQkcvQb8-H0mSuJxu-x8enR2eJwPYxPyoKxY5L5QUIF1haQuV4sEzzozRsSIvHlcoZIvQZDC26itRUKTbEzWCSPKwoF8wzaatoE9xkUSILUV0QAoU6TSaAQerC2DSU6kjH15gLIOg6Y4jba4rrG2INjrR9gztr-0_d0raTxpNaEdWVqQ-nX3BcZEPcRE_VxMZGz0sJ_1cCRva2E0pt4KAzBjn5bLeJjohsQ10N51Nqq7WUSbt_32Lz2RGitZpGsZs2uBsebq-kozv-wEu6tCIJFV7_7Hb3vPtgR1YFBbZDFiG4ubO_iAvGjhP3ZH4C_iFQy4
  priority: 102
  providerName: Directory of Open Access Journals
Title Industrial-Scale Production of Mycotoxin Binder from the Red Yeast Sporidiobolus pararoseus KM281507
URI https://www.ncbi.nlm.nih.gov/pubmed/35448584
https://www.proquest.com/docview/2652999070
https://www.proquest.com/docview/2654281950
https://pubmed.ncbi.nlm.nih.gov/PMC9029514
https://doaj.org/article/c7cd3da7e49443c3b4ced51c0e63027b
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BwoEL4s2WEhnBhcOqGz83J9SFRhUoVVWoVE6rXXsMQWjdJqlE_z3j3U1CUMUtWs9hMh7b38zY3wC8tWM0pKBNJR0PqZTOpTUB5VTVFQUbmZtU7W3C2Yk-PpefLtRFn3Bb9tcq13tiu1G7YGOO_IBrRTsnhXLZ-8urNHaNitXVvoXGXRjSFpznAxgWRyenZ9ssi8o1ncAdL6mg-P7gZ_A5Oa5QYuckagn7b0OZ_16W_Ov0mT6EBz1sZIfdPD-CO9g8hntFIGh38wTctgFH-oWMjuy0I3Ilo7Pg2ezGhlX4PW9YEdkRFyw-KmEE_dgZOvYttu9hsd353M1DTb64ZJERnLRG-vl5xvOI557C-fTo64fjtG-fkFpp-CqtM4kTNFUm4mtXQ0DPVHo8ti2Iq2kkhn4ereC1ccoYAjbeOG8qrnmeVSiewaAJDb4Axj1HoQx3GlHqzOda2QzRmNxqX3GfwLu1KUvbc4vHFhe_SooxotnLrdkTeLORvewYNW6VKuKMbCQiC3b7ISy-l_2iKq2xTrjKoJxIKayopUWn6B-ijuXYOoH99XyW_dJclltHSuD1ZpgWVayUVA2G61ZGthVGknneTf9GE6EooiXYloDZcYwdVXdHmvmPlrh7knECtHLv_2q9hPs8vrGIDx-zfRisFtf4ipDPqh7B8LD4WExHvZuP2gzCH9pIB1E
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NDom9IP4TGGAEPPAQzbUdO3lAiMKmjq7VNDZpPIXEvowilIy2E_RL8Rk5J2lL0cTb3qL4FF3uzr7f2b47gJe2i4YYtKEi9xAq5VyYE1AOozyjYIO7JKtvEw5Hun-iPp5Gpxvwe5EL469VLtbEeqF2lfV75DtCR7RyUijH357_CH3XKH-6umih0ZjFAOc_KWSbvtn_QPp9JcTe7vH7fth2FQitMmIW5lxhgibj0ieBGsI_JtPdrq2xTU4jPiIq0EqRGxcZQ_6-MK4wmdAi5hlK-u412FRSc9GBzd7u6PBotasTxZo8flMHVcqE73yripgmiozkmuerGwRchmr_vZz5l7fbuwU3W5jK3jV2dRs2sLwD13sVQcn5XXCrhh_hJ1IyssOmcCwpmVUFG85tNat-jUvW89UYJ8wnsTCCmuwIHfvs2wUx31597MZVTrY_Zb4COXGN9DgYitjjx3twciWCvQ-dsirxITBRCJSREU4jKs2LWEeWIxoTW11kogjg9UKUqW1rmfuWGt9Timm82NOV2AN4saQ9byp4XErV8xpZUviq2_WLanKWtpM4tcY66TKDKlFKWpkriy6iP0Ttj3_zALYX-kzbpWCargw3gOfLYZrE_mQmK7G6qGlUfaJJNA8a9S85kRFF0AQTAzBrhrHG6vpIOf5aFwpPuCAArR79n61ncKN_PDxID_ZHg8ewJXx-h0-65NvQmU0u8Amhrln-tDV1Bl-uenb9AR3fP90
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9NADLdGhxAviP8UBhwCHniImt5dcskDQpSt2iitqsGk7Skkd85WhJLRdoJ-NT4ddpK2FE287S3KWZFzts8_351tgFe2i4YYtJ4m9-Bp7ZyXEVD2giylYMN3cVrdJhyOwv0j_fE4ON6C38tcGL5WuVwTq4XalZb3yDsyDGjlpFDO7-TNtYjxbv_d-Q-PO0jxSeuynUatIgNc_KTwbfb2YJdk_VrK_t6XD_te02HAs9rIuZf5GmM0qa84IdQQFjJp2O3aCudkNMLRUY5Wycy4wBjy_blxuUllKCM_RUXfvQbbhqOiFmz39kbjw_UOTxCF5P3rmqhKxX7nW5lHZDQqUBtesGoWcBnC_fei5l-er38bbjWQVbyvdewObGFxF673SoKVi3vg1s0_vM8kcBTjuogsCVyUuRgubDkvf00K0ePKjFPBCS2CYKc4RCdOuHWQ4FbrEzcpM7KDmeBq5MQ10uNgKCPGkvfh6Eom9gG0irLARyBkLlEFRroQUYd-HoWB9RGNiWyYpzJvw5vlVCa2qWvO7TW-JxTf8LQn62lvw8sV7XldzeNSqh5LZEXBFbirF-X0NGkMOrHGOuVSgzrWWlmVaYsuoD_EkI-CszbsLOWZNMvCLFkrcRterIbJoPmUJi2wvKhodHW6STQPa_GvOFEBRdMEGdtgNhRjg9XNkWJyVhUNj31JYFo__j9bz-EGWVXy6WA0eAI3Jad6cP6lvwOt-fQCnxIAm2fPGk0X8PWqjesP7j9EEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Industrial-Scale+Production+of+Mycotoxin+Binder+from+the+Red+Yeast+Sporidiobolus+pararoseus+KM281507&rft.jtitle=Journal+of+fungi+%28Basel%29&rft.au=Tapingkae%2C+Wanaporn&rft.au=Srinual%2C+Orranee&rft.au=Lumsangkul%2C+Chompunut&rft.au=Doan%2C+Hien+Van&rft.date=2022-03-30&rft.issn=2309-608X&rft.eissn=2309-608X&rft.volume=8&rft.issue=4&rft_id=info:doi/10.3390%2Fjof8040353&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2309-608X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2309-608X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2309-608X&client=summon