Evaluation of a Thermophilic, Psychrostable, and Heavy Metal-Resistant Red Sea Brine Pool Esterase

Lipolytic enzymes catalyze the hydrolysis and synthesis of ester compounds. They are valuable in the pulp, food, and textile industries. This study aims to comprehensively evaluate the extreme properties of a hormone-sensitive lipase (EstATII-TM) isolated from the Red Sea Atlantis II brine pool. Est...

Full description

Saved in:
Bibliographic Details
Published inMarine drugs Vol. 20; no. 5; p. 274
Main Authors Ahmed, Shimaa F, Abdallah, Rehab Z, Siam, Rania
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.04.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lipolytic enzymes catalyze the hydrolysis and synthesis of ester compounds. They are valuable in the pulp, food, and textile industries. This study aims to comprehensively evaluate the extreme properties of a hormone-sensitive lipase (EstATII-TM) isolated from the Red Sea Atlantis II brine pool. EstATII-TM was cloned, expressed, and its biochemical activities were assessed under different conditions. EstATII-TM catalytic properties and resistance to different metal ions were compared to commercial thermophilic esterases under different temperatures. Phylogenetically, EstATII-TM was assigned to the GDSAG motif subfamily of hormone-sensitive lipase. The optimal enzyme activity was evident at a temperature of 30 °C and pH 7-8. The enzyme retained 84.9% of its activity at 0.5 M NaCl. EstATII-TM maintained 93% to 97% activity at -40 and -20 °C, respectively. EstATII-TM activity was significantly enhanced, up to 10-fold, at temperatures ranging from 45 to 65 °C in the presence of 1 mM Cu , Cd , Ba , Mn , and Zn . EstATII-TM showed superior catalytic activity and resistance-to/enhancement-by metal ions compared to two commercial thermophilic esterases. The Red Sea Atlantis II brine EstATII-TM is characterized by tolerance to high temperatures, stability to hot and cold conditions, as well as toxic heavy metal contamination, making it an ideal candidate for industrial processes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1660-3397
1660-3397
DOI:10.3390/md20050274