Inhibition of activated factor X by rivaroxaban attenuates neointima formation after wire-mediated vascular injury

Accumulating evidence suggests that activated factor X (FXa), a key coagulation factor, plays an important role in the development of vascular inflammation through activation of many cell types. Here, we investigated whether pharmacological blockade of FXa attenuates neointima formation after wire-m...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of pharmacology Vol. 820; pp. 222 - 228
Main Authors Hara, Tomoya, Fukuda, Daiju, Tanaka, Kimie, Higashikuni, Yasutomi, Hirata, Yoichiro, Yagi, Shusuke, Soeki, Takeshi, Shimabukuro, Michio, Sata, Masataka
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 05.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Accumulating evidence suggests that activated factor X (FXa), a key coagulation factor, plays an important role in the development of vascular inflammation through activation of many cell types. Here, we investigated whether pharmacological blockade of FXa attenuates neointima formation after wire-mediated vascular injury. Transluminal femoral artery injury was induced in C57BL/6 mice by inserting a straight wire. Rivaroxaban (5mg/kg/day), a direct FXa inhibitor, was administered from one week before surgery until killed. At four weeks after surgery, rivaroxaban significantly attenuated neointima formation in the injured arteries compared with control (P<0.01). Plasma lipid levels and blood pressure were similar between the rivaroxaban-treated group and non-treated group. Quantitative RT-PCR analyses demonstrated that rivaroxaban reduced the expression of inflammatory molecules (e.g., IL-1β and TNF-α) in injured arteries at seven days after surgery (P<0.05, respectively). In vitro experiments using mouse peritoneal macrophages demonstrated that FXa increased the expression of inflammatory molecules (e.g., IL-1β and TNF-α), which was blocked in the presence of rivaroxaban (P<0.05). Also, in vitro experiments using rat vascular smooth muscle cells (VSMC) demonstrated that FXa promoted both proliferation and migration of this cell type (P<0.05), which were blocked in the presence of rivaroxaban. Inhibition of FXa by rivaroxaban attenuates neointima formation after wire-mediated vascular injury through inhibition of inflammatory activation of macrophages and VSMC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2017.12.037