Mixing Performance of a Passive Micro-Mixer with Mixing Units Stacked in Cross Flow Direction

A new passive micro-mixer with mixing units stacked in the cross flow direction was proposed, and its performance was evaluated numerically. The present micro-mixer consisted of eight mixing units. Each mixing unit had four baffles, and they were arranged alternatively in the cross flow and transver...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 12; no. 12; p. 1530
Main Authors Juraeva, Makhsuda, Kang, Dong-Jin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 09.12.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new passive micro-mixer with mixing units stacked in the cross flow direction was proposed, and its performance was evaluated numerically. The present micro-mixer consisted of eight mixing units. Each mixing unit had four baffles, and they were arranged alternatively in the cross flow and transverse direction. The mixing units were stacked in four different ways: one step, two step, four step, and eight step stacking. A numerical study was carried out for the Reynolds numbers from 0.5 to 50. The corresponding volume flow rate ranged from 6.33 μL/min to 633 μL/min. The mixing performance was analyzed in terms of the degree of mixing ( ) and relative mixing energy cost ( ). The numerical results showed a noticeable enhancement of the mixing performance compared with other micromixers. The mixing enhancement was achieved by two flow characteristics: baffle wall impingement by a stream of high concentration and swirl motion within the mixing unit. The baffle wall impingement by a stream of high concentration was observed throughout all Reynolds numbers. The swirl motion inside the mixing unit was observed in the cross flow direction, and became significant as the Reynolds number increased to larger than about five. The eight step stacking showed the best performance for Reynolds numbers larger than about two, while the two step stacking was better for Reynolds numbers less than about two.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2072-666X
2072-666X
DOI:10.3390/mi12121530