The Dominant Role of CD8⁺ Dendritic Cells in Cross-Presentation Is Not Dictated by Antigen Capture
Mouse spleens contain three populations of conventional ($CD11c^{high}$) dendritic cells (DCs) that play distinct functions. The CD8⁺ DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ab...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 103; no. 28; pp. 10729 - 10734 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
11.07.2006
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mouse spleens contain three populations of conventional ($CD11c^{high}$) dendritic cells (DCs) that play distinct functions. The CD8⁺ DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ability is because only the CD8⁺ DC can capture the antigens used in cross-presentation assays, or because this is the only DC population that possesses specialized machinery for cross-presentation. To solve this important question we examined the splenic DC subsets for their ability to both present via MHC class II molecules and cross-present via MHC class I using four different forms of the model antigen ovalbumin (OVA). These forms include a cell-associated form, a soluble form, OVA expressed in bacteria, or OVA bound to latex beads. With the exception of bacterial antigen, which was poorly cross-presented by all DC, all antigenic forms were cross-presented much more efficiently by the CD8⁺ DC. This pattern could not be attributed simply to a difference in antigen capture because all DC subsets presented the antigen via MHC class II. Indeed, direct assessments of endocytosis showed that CD8⁺ and CD8⁻ DC captured comparable amounts of soluble and bead-associated antigen, yet only the CD8⁺ DC cross-presented these antigenic forms. Our results indicate that cross-presentation requires specialized machinery that is expressed by CD8⁺ DC but largely absent from CD8⁻ DC. This conclusion has important implications for the design of vaccination strategies based on antigen targeting to DC. |
---|---|
AbstractList | Mouse spleens contain three populations of conventional (CD11c
high
) dendritic cells (DCs) that play distinct functions. The CD8
+
DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ability is because only the CD8
+
DC can capture the antigens used in cross-presentation assays, or because this is the only DC population that possesses specialized machinery for cross-presentation. To solve this important question we examined the splenic DC subsets for their ability to both present via MHC class II molecules and cross-present via MHC class I using four different forms of the model antigen ovalbumin (OVA). These forms include a cell-associated form, a soluble form, OVA expressed in bacteria, or OVA bound to latex beads. With the exception of bacterial antigen, which was poorly cross-presented by all DC, all antigenic forms were cross-presented much more efficiently by the CD8
+
DC. This pattern could not be attributed simply to a difference in antigen capture because all DC subsets presented the antigen via MHC class II. Indeed, direct assessments of endocytosis showed that CD8
+
and CD8
−
DC captured comparable amounts of soluble and bead-associated antigen, yet only the CD8
+
DC cross-presented these antigenic forms. Our results indicate that cross-presentation requires specialized machinery that is expressed by CD8
+
DC but largely absent from CD8
−
DC. This conclusion has important implications for the design of vaccination strategies based on antigen targeting to DC. Mouse spleens contain three populations of conventional (CD11c high ) dendritic cells (DCs) that play distinct functions. The CD8 + DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ability is because only the CD8 + DC can capture the antigens used in cross-presentation assays, or because this is the only DC population that possesses specialized machinery for cross-presentation. To solve this important question we examined the splenic DC subsets for their ability to both present via MHC class II molecules and cross-present via MHC class I using four different forms of the model antigen ovalbumin (OVA). These forms include a cell-associated form, a soluble form, OVA expressed in bacteria, or OVA bound to latex beads. With the exception of bacterial antigen, which was poorly cross-presented by all DC, all antigenic forms were cross-presented much more efficiently by the CD8 + DC. This pattern could not be attributed simply to a difference in antigen capture because all DC subsets presented the antigen via MHC class II. Indeed, direct assessments of endocytosis showed that CD8 + and CD8 − DC captured comparable amounts of soluble and bead-associated antigen, yet only the CD8 + DC cross-presented these antigenic forms. Our results indicate that cross-presentation requires specialized machinery that is expressed by CD8 + DC but largely absent from CD8 − DC. This conclusion has important implications for the design of vaccination strategies based on antigen targeting to DC. antigen presentation mice endocytosis ovalbumin vaccines Mouse spleens contain three populations of conventional ($CD11c^{high}$) dendritic cells (DCs) that play distinct functions. The CD8⁺ DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ability is because only the CD8⁺ DC can capture the antigens used in cross-presentation assays, or because this is the only DC population that possesses specialized machinery for cross-presentation. To solve this important question we examined the splenic DC subsets for their ability to both present via MHC class II molecules and cross-present via MHC class I using four different forms of the model antigen ovalbumin (OVA). These forms include a cell-associated form, a soluble form, OVA expressed in bacteria, or OVA bound to latex beads. With the exception of bacterial antigen, which was poorly cross-presented by all DC, all antigenic forms were cross-presented much more efficiently by the CD8⁺ DC. This pattern could not be attributed simply to a difference in antigen capture because all DC subsets presented the antigen via MHC class II. Indeed, direct assessments of endocytosis showed that CD8⁺ and CD8⁻ DC captured comparable amounts of soluble and bead-associated antigen, yet only the CD8⁺ DC cross-presented these antigenic forms. Our results indicate that cross-presentation requires specialized machinery that is expressed by CD8⁺ DC but largely absent from CD8⁻ DC. This conclusion has important implications for the design of vaccination strategies based on antigen targeting to DC. Mouse spleens contain three populations of conventional (CD11c(high)) dendritic cells (DCs) that play distinct functions. The CD8(+) DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ability is because only the CD8(+) DC can capture the antigens used in cross-presentation assays, or because this is the only DC population that possesses specialized machinery for cross-presentation. To solve this important question we examined the splenic DC subsets for their ability to both present via MHC class II molecules and cross-present via MHC class I using four different forms of the model antigen ovalbumin (OVA). These forms include a cell-associated form, a soluble form, OVA expressed in bacteria, or OVA bound to latex beads. With the exception of bacterial antigen, which was poorly cross-presented by all DC, all antigenic forms were cross-presented much more efficiently by the CD8(+) DC. This pattern could not be attributed simply to a difference in antigen capture because all DC subsets presented the antigen via MHC class II. Indeed, direct assessments of endocytosis showed that CD8(+) and CD8(-) DC captured comparable amounts of soluble and bead-associated antigen, yet only the CD8(+) DC cross-presented these antigenic forms. Our results indicate that cross-presentation requires specialized machinery that is expressed by CD8(+) DC but largely absent from CD8(-) DC. This conclusion has important implications for the design of vaccination strategies based on antigen targeting to DC. |
Author | Wilson, Nicholas S. Carbone, Francis R. Li, Ming Smith, Christopher M. Behrens, Georg M. N. Kupresanin, Fiona Heath, William R. El-Sukkari, Dima Shortman, Ken Pooley, Joanne L. Villadangos, Jose A. Davey, Gayle Belz, Gabrielle T. Schnorrer, Petra Maraskovsky, Eugene |
Author_xml | – sequence: 1 givenname: Petra surname: Schnorrer fullname: Schnorrer, Petra – sequence: 2 givenname: Georg M. N. surname: Behrens fullname: Behrens, Georg M. N. – sequence: 3 givenname: Nicholas S. surname: Wilson fullname: Wilson, Nicholas S. – sequence: 4 givenname: Joanne L. surname: Pooley fullname: Pooley, Joanne L. – sequence: 5 givenname: Christopher M. surname: Smith fullname: Smith, Christopher M. – sequence: 6 givenname: Dima surname: El-Sukkari fullname: El-Sukkari, Dima – sequence: 7 givenname: Gayle surname: Davey fullname: Davey, Gayle – sequence: 8 givenname: Fiona surname: Kupresanin fullname: Kupresanin, Fiona – sequence: 9 givenname: Ming surname: Li fullname: Li, Ming – sequence: 10 givenname: Eugene surname: Maraskovsky fullname: Maraskovsky, Eugene – sequence: 11 givenname: Gabrielle T. surname: Belz fullname: Belz, Gabrielle T. – sequence: 12 givenname: Francis R. surname: Carbone fullname: Carbone, Francis R. – sequence: 13 givenname: Ken surname: Shortman fullname: Shortman, Ken – sequence: 14 givenname: William R. surname: Heath fullname: Heath, William R. – sequence: 15 givenname: Jose A. surname: Villadangos fullname: Villadangos, Jose A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16807294$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQxi3Uim4LZ04gn5B6SDuOE_-5IFXZQitVgNDeLSdxWldZe7Gdih55LR6HJ8HRrrr01JOl8W---Wa-Y3TgvDMIvSNwRoDT843T8QwYEFkzAvQVWhCQpGCVhAO0ACh5IaqyOkLHMd4DgKwFvEZHhAngpawWqF_dGbz0a-u0S_iHHw32A26W4u_vP3hpXB9ssh1uzDhGbB1ugo-x-B5MNC7pZL3D1xF_9QkvbZcLpsftI75wyd6aTOtNmoJ5gw4HPUbzdveeoNXny1VzVdx8-3LdXNwUXcXLVEjS1kznNbo6Wx10z2nLhdGi5S3rB1KBqE3F-76UQFshueilYMKQDjqhNT1Bn7aym6ldm77LDoMe1SbYtQ6Pymurnv84e6du_YMiNZSllFng404g-J-TiUmtbezy6toZP0XFBKOcsiqD51uwm88RzPA0hICag1FzMGofTO748L-3Pb9LIgN4B8ydezmqSjFLlrO90xcQNUzjmMyvlNn3W_Y-Jh-eYApQyZoD_Qeu-K7w |
CitedBy_id | crossref_primary_10_1038_icb_2015_98 crossref_primary_10_3727_096368910X528094 crossref_primary_10_3389_fimmu_2024_1415573 crossref_primary_10_4049_jimmunol_1003557 crossref_primary_10_1038_icb_2012_29 crossref_primary_10_1073_pnas_1206039109 crossref_primary_10_1038_icb_2009_90 crossref_primary_10_3389_fimmu_2015_00267 crossref_primary_10_1073_pnas_0712394105 crossref_primary_10_1038_cmi_2016_49 crossref_primary_10_1038_cddis_2015_129 crossref_primary_10_1016_j_coi_2010_01_022 crossref_primary_10_1016_j_celrep_2024_113754 crossref_primary_10_1371_journal_pone_0021949 crossref_primary_10_1073_pnas_1002769107 crossref_primary_10_1186_s13071_017_2250_1 crossref_primary_10_1016_j_immuni_2008_09_002 crossref_primary_10_4049_jimmunol_0900726 crossref_primary_10_1038_icb_2010_161 crossref_primary_10_4049_jimmunol_182_1_283 crossref_primary_10_1371_journal_pone_0011216 crossref_primary_10_1016_j_coi_2006_11_017 crossref_primary_10_1038_s41467_020_15030_4 crossref_primary_10_1016_j_smim_2011_02_001 crossref_primary_10_1111_j_1582_4934_2008_00378_x crossref_primary_10_3389_fimmu_2015_00035 crossref_primary_10_3389_fimmu_2019_00741 crossref_primary_10_3389_fmicb_2015_00557 crossref_primary_10_1111_cea_12755 crossref_primary_10_1080_14653240701306212 crossref_primary_10_1016_j_intimp_2020_106516 crossref_primary_10_1111_j_1365_2249_2011_04411_x crossref_primary_10_18632_oncotarget_10183 crossref_primary_10_4049_jimmunol_181_4_2455 crossref_primary_10_1007_s10059_012_0058_6 crossref_primary_10_1126_science_aat5030 crossref_primary_10_1371_journal_pone_0093444 crossref_primary_10_1002_eji_201546023 crossref_primary_10_1111_j_1751_1097_2010_00859_x crossref_primary_10_1021_acsbiomaterials_7b00440 crossref_primary_10_1002_eji_200939748 crossref_primary_10_1111_j_1582_4934_2010_01089_x crossref_primary_10_1126_science_1136080 crossref_primary_10_4049_jimmunol_0900155 crossref_primary_10_1073_pnas_0810268105 crossref_primary_10_4049_jimmunol_180_5_3201 crossref_primary_10_1038_nri3254 crossref_primary_10_1093_infdis_jir656 crossref_primary_10_1016_j_smim_2023_101711 crossref_primary_10_3390_jof7080656 crossref_primary_10_4049_jimmunol_182_3_1260 crossref_primary_10_1126_science_1137971 crossref_primary_10_1016_j_vaccine_2018_04_047 crossref_primary_10_1002_eji_200838602 crossref_primary_10_4049_jimmunol_1002683 crossref_primary_10_1002_cmdc_202100656 crossref_primary_10_1016_j_immuni_2019_04_001 crossref_primary_10_3389_fimmu_2018_02604 crossref_primary_10_3389_fimmu_2020_01267 crossref_primary_10_1073_pnas_1019547108 crossref_primary_10_1073_pnas_0806727105 crossref_primary_10_1371_journal_pone_0083191 crossref_primary_10_1371_journal_ppat_1000198 crossref_primary_10_4049_jimmunol_178_11_6861 crossref_primary_10_1111_j_1365_2567_2007_02711_x crossref_primary_10_1182_blood_2008_10_185884 crossref_primary_10_1016_j_immuni_2009_12_006 crossref_primary_10_1016_j_coi_2007_12_002 crossref_primary_10_1128_IAI_05350_11 crossref_primary_10_1186_1741_7007_8_37 crossref_primary_10_15252_emmm_201708123 crossref_primary_10_4049_jimmunol_1700909 crossref_primary_10_4049_jimmunol_1302312 crossref_primary_10_1111_j_0105_2896_2009_00882_x crossref_primary_10_1038_ni_2555 crossref_primary_10_1099_vir_0_031815_0 crossref_primary_10_3389_fimmu_2019_02332 crossref_primary_10_1182_blood_2011_12_398164 crossref_primary_10_4049_jimmunol_2001426 crossref_primary_10_1084_jem_20100985 crossref_primary_10_1002_eji_200839035 crossref_primary_10_1038_srep43985 crossref_primary_10_1111_imr_12426 crossref_primary_10_1016_j_immuni_2010_12_011 crossref_primary_10_1371_journal_pone_0017657 crossref_primary_10_4049_jimmunol_0803473 crossref_primary_10_1016_j_cell_2007_01_024 crossref_primary_10_1016_j_tmrv_2008_02_002 crossref_primary_10_1016_j_bbcan_2020_188377 crossref_primary_10_4049_jimmunol_1004163 crossref_primary_10_1002_eji_201040419 crossref_primary_10_1172_JCI34584 crossref_primary_10_1182_blood_2008_05_155176 crossref_primary_10_1182_blood_2011_06_362582 crossref_primary_10_1016_j_semarthrit_2008_03_006 crossref_primary_10_1111_j_0105_2896_2009_00870_x crossref_primary_10_1155_2019_7596786 crossref_primary_10_1111_j_1365_3024_2008_01020_x crossref_primary_10_3390_ijms24129851 crossref_primary_10_4049_jimmunol_1001205 crossref_primary_10_1002_smll_202103984 crossref_primary_10_1111_j_1749_6632_2010_05746_x crossref_primary_10_1084_jem_20170335 crossref_primary_10_1016_j_immuni_2009_01_013 crossref_primary_10_1186_s40425_019_0702_1 crossref_primary_10_1007_s00018_012_1100_8 crossref_primary_10_4049_jimmunol_180_7_4615 crossref_primary_10_1002_eji_201747372 crossref_primary_10_3389_fphys_2015_00001 crossref_primary_10_1016_j_immuni_2008_08_004 crossref_primary_10_1016_j_celrep_2020_107604 crossref_primary_10_1111_imcb_12757 crossref_primary_10_1172_JCI45416 crossref_primary_10_4049_jimmunol_0900409 crossref_primary_10_4049_jimmunol_0902707 crossref_primary_10_1182_blood_2012_07_445999 crossref_primary_10_1126_scitranslmed_3000359 crossref_primary_10_1016_j_immuni_2008_08_008 crossref_primary_10_1586_14760584_7_7_1019 crossref_primary_10_1038_icb_2011_71 crossref_primary_10_1016_j_it_2011_10_007 crossref_primary_10_1084_jem_20190835 crossref_primary_10_1016_j_immuni_2010_01_013 crossref_primary_10_1016_j_coi_2013_11_001 crossref_primary_10_4049_jimmunol_1402673 crossref_primary_10_2217_fon_12_125 crossref_primary_10_1111_j_1365_2567_2007_02785_x crossref_primary_10_3109_08830181003602507 crossref_primary_10_4049_jimmunol_0802286 crossref_primary_10_1016_j_vaccine_2008_02_011 crossref_primary_10_1016_j_immuni_2011_08_011 crossref_primary_10_4049_jimmunol_1002084 crossref_primary_10_1084_jem_20070458 crossref_primary_10_1111_j_1600_065X_2008_00679_x crossref_primary_10_1172_JCI77014 crossref_primary_10_1016_j_molimm_2018_01_014 crossref_primary_10_1016_j_cell_2015_08_004 crossref_primary_10_1038_ni_3535 crossref_primary_10_4049_jimmunol_1300975 crossref_primary_10_1172_JCI63417 crossref_primary_10_3389_fimmu_2019_00041 crossref_primary_10_1002_JLB_3MR0621_616RR crossref_primary_10_1371_journal_pone_0191133 crossref_primary_10_1016_j_imlet_2007_09_007 crossref_primary_10_1002_eji_200838199 crossref_primary_10_1002_eji_201242799 crossref_primary_10_1111_j_1365_2567_2011_03457_x crossref_primary_10_1016_j_jaut_2007_07_017 crossref_primary_10_1002_eji_200737578 crossref_primary_10_3389_fimmu_2023_1182553 crossref_primary_10_1084_jem_20062293 crossref_primary_10_4049_jimmunol_1602077 crossref_primary_10_1038_srep40942 crossref_primary_10_4049_jimmunol_0803364 crossref_primary_10_4049_jimmunol_1600692 crossref_primary_10_1016_j_celrep_2022_111205 crossref_primary_10_1128_CVI_00166_08 crossref_primary_10_4049_jimmunol_1102725 crossref_primary_10_1016_j_biomaterials_2014_10_053 crossref_primary_10_1016_j_cell_2010_09_039 crossref_primary_10_1189_jlb_0912452 crossref_primary_10_1016_j_immuni_2009_09_014 crossref_primary_10_1016_j_vetimm_2013_05_015 crossref_primary_10_1016_j_immuni_2015_07_020 crossref_primary_10_1189_jlb_0308154 crossref_primary_10_4049_jimmunol_1402535 crossref_primary_10_1016_j_omto_2021_10_003 crossref_primary_10_1371_journal_pone_0067796 crossref_primary_10_1084_jem_20080601 crossref_primary_10_1128_JVI_01510_08 crossref_primary_10_1002_adtp_202100144 crossref_primary_10_18632_oncotarget_15806 crossref_primary_10_1007_s00262_016_1830_9 crossref_primary_10_1016_j_ijbiomac_2020_05_160 crossref_primary_10_3390_md12074148 crossref_primary_10_4049_jimmunol_179_6_3425 crossref_primary_10_1016_j_coi_2009_03_011 crossref_primary_10_1073_pnas_0708622104 crossref_primary_10_1016_j_carbpol_2017_02_058 crossref_primary_10_4049_jimmunol_1303215 crossref_primary_10_1002_eji_200838302 crossref_primary_10_1007_s00005_015_0370_x crossref_primary_10_1080_2162402X_2017_1325981 crossref_primary_10_1182_blood_2009_10_249458 crossref_primary_10_4049_jimmunol_0902987 crossref_primary_10_1084_jem_20092140 crossref_primary_10_1586_14760584_7_7_1069 crossref_primary_10_1080_2162402X_2020_1772663 crossref_primary_10_1371_journal_pone_0099396 crossref_primary_10_18632_oncotarget_8200 crossref_primary_10_4049_jimmunol_181_10_6984 crossref_primary_10_1126_science_1142955 crossref_primary_10_1084_jem_20091964 crossref_primary_10_1158_0008_5472_CAN_13_0777 crossref_primary_10_1038_cr_2010_94 crossref_primary_10_1038_nri1906 crossref_primary_10_3390_vaccines9010056 crossref_primary_10_1016_j_celrep_2016_07_076 crossref_primary_10_1016_j_jconrel_2019_09_013 crossref_primary_10_1073_pnas_0610383104 crossref_primary_10_4049_jimmunol_181_6_3811 crossref_primary_10_3858_emm_2009_41_2_008 crossref_primary_10_1172_JCI30605 crossref_primary_10_1016_j_molmed_2009_04_003 crossref_primary_10_3389_fmicb_2020_559105 crossref_primary_10_1038_ni_1724 crossref_primary_10_4049_jimmunol_179_7_4492 crossref_primary_10_1002_0471142735_im0307s86 crossref_primary_10_1016_j_vaccine_2009_11_018 crossref_primary_10_1371_journal_ppat_1001212 crossref_primary_10_1016_j_immuni_2009_06_022 crossref_primary_10_1038_icb_2008_15 crossref_primary_10_1002_smll_202006000 crossref_primary_10_4049_jimmunol_1700186 crossref_primary_10_1093_annonc_mdx237 crossref_primary_10_4049_jimmunol_181_5_3212 crossref_primary_10_1038_icb_2008_3 crossref_primary_10_1681_ASN_2019030236 crossref_primary_10_1111_imr_12432 crossref_primary_10_1038_s41467_021_26446_x crossref_primary_10_1111_imr_12433 crossref_primary_10_1111_tra_12026 crossref_primary_10_1039_D1RA08335J crossref_primary_10_1016_j_xcrm_2022_100534 crossref_primary_10_1634_stemcells_2007_0244 crossref_primary_10_1016_j_it_2013_02_007 crossref_primary_10_1182_blood_2011_06_363564 crossref_primary_10_12688_f1000research_9997_1 crossref_primary_10_1016_j_exphem_2009_06_001 crossref_primary_10_1182_blood_2011_03_342261 crossref_primary_10_1073_pnas_0909541107 crossref_primary_10_1111_imm_13171 crossref_primary_10_1016_j_vaccine_2011_06_071 crossref_primary_10_4049_jimmunol_1001737 crossref_primary_10_4049_jimmunol_1202798 crossref_primary_10_15252_embj_2020106228 crossref_primary_10_1002_eji_200737647 crossref_primary_10_3389_fimmu_2018_02874 crossref_primary_10_1084_jem_20071365 crossref_primary_10_1146_annurev_immunol_101320_031931 crossref_primary_10_1038_icb_2010_117 crossref_primary_10_1038_cdd_2016_24 crossref_primary_10_1172_JCI60644 crossref_primary_10_1084_jem_20070176 crossref_primary_10_1016_j_semcdb_2017_12_009 crossref_primary_10_3390_cells9030565 crossref_primary_10_1002_art_27625 crossref_primary_10_1038_nri2103 crossref_primary_10_1146_annurev_immunol_041015_055254 crossref_primary_10_4049_jimmunol_0901695 crossref_primary_10_1016_j_fmre_2023_03_018 crossref_primary_10_1016_j_ijbiomac_2018_04_144 crossref_primary_10_1002_adma_202110588 crossref_primary_10_1016_j_biomaterials_2020_120182 crossref_primary_10_1016_j_molimm_2019_12_016 crossref_primary_10_1371_journal_ppat_1004135 crossref_primary_10_4049_jimmunol_0804035 crossref_primary_10_1007_s12026_011_8237_7 crossref_primary_10_1016_j_biomaterials_2019_04_030 crossref_primary_10_1016_j_immuni_2011_06_012 crossref_primary_10_1002_eji_201141540 crossref_primary_10_1021_acs_bioconjchem_9b00091 crossref_primary_10_1016_j_dci_2020_103692 crossref_primary_10_1038_icb_2008_63 crossref_primary_10_1128_CVI_00291_10 crossref_primary_10_1172_JCI60659 crossref_primary_10_1038_s41409_018_0148_y crossref_primary_10_1002_eji_201040482 crossref_primary_10_1093_intimm_dxn147 crossref_primary_10_1371_journal_pone_0009281 crossref_primary_10_1007_s10555_011_9283_2 crossref_primary_10_1016_j_ijbiomac_2018_09_187 crossref_primary_10_1002_eji_200939790 crossref_primary_10_1038_s41590_020_0746_x crossref_primary_10_1073_pnas_0812247106 crossref_primary_10_1371_journal_pone_0002404 crossref_primary_10_1016_j_cimid_2011_09_009 crossref_primary_10_4049_jimmunol_1701593 crossref_primary_10_1084_jem_20160597 crossref_primary_10_1371_journal_pone_0001691 crossref_primary_10_3389_fimmu_2014_00140 crossref_primary_10_1111_j_1530_0277_2007_00479_x crossref_primary_10_1128_JVI_00892_10 crossref_primary_10_1172_JCI60660 crossref_primary_10_1189_jlb_0610368 crossref_primary_10_4049_jimmunol_1500767 crossref_primary_10_3389_fimmu_2022_910705 crossref_primary_10_1016_j_isci_2019_08_024 crossref_primary_10_1038_s41577_018_0088_1 crossref_primary_10_1089_ars_2012_4557 crossref_primary_10_1155_2011_417403 crossref_primary_10_1371_journal_ppat_1005561 crossref_primary_10_4049_jimmunol_0900908 crossref_primary_10_4049_jimmunol_1001022 |
Cites_doi | 10.1182/blood-2004-05-1891 10.1073/pnas.0507484102 10.4049/jimmunol.168.5.2240 10.1016/S0065-2776(04)86007-3 10.1038/344065a0 10.4049/jimmunol.174.12.7676 10.1182/blood-2004-08-3105 10.1084/jem.20021598 10.1016/0092-8674(91)90448-8 10.1073/pnas.0509307103 10.1084/jem.171.2.377 10.4049/jimmunol.158.6.2723 10.1084/jem.20010898 10.1084/jem.20020161 10.1046/j.1440-1711.1998.00709.x 10.1016/j.smim.2005.05.015 10.1111/j.0105-2896.2004.00142.x 10.1046/j.1600-6135.2003.00246.x 10.1038/ni1300 10.1182/blood-2003-02-0513 10.1073/pnas.112331099 10.4049/jimmunol.174.11.6592 10.4049/jimmunol.166.9.5327 10.1084/jem.20020861 10.1038/14058 10.1038/nri746 10.1016/j.cell.2005.08.018 10.1002/1521-4141(200209)32:9<2385::AID-IMMU2385>3.0.CO;2-V 10.1093/intimm/dxh210 10.2337/diabetes.53.8.1995 10.4049/jimmunol.164.6.2978 10.4049/jimmunol.166.10.6099 10.1046/j.1365-2567.2002.01513.x 10.1111/j.0105-2896.2005.00316.x 10.1084/jem.194.6.769 10.1182/blood-2003-08-2729 10.1002/eji.200526100 10.1046/j.1440-1711.2002.01116.x 10.1084/jem.180.5.1849 10.1084/jem.192.12.1685 10.1084/jem.20021542 10.4049/jimmunol.167.2.741 10.1084/jem.20021031 10.1016/0092-8674(94)90169-4 10.1084/jem.20020295 |
ContentType | Journal Article |
Copyright | Copyright 2006 National Academy of Sciences of the United States of America 2006 by The National Academy of Sciences of the USA 2006 |
Copyright_xml | – notice: Copyright 2006 National Academy of Sciences of the United States of America – notice: 2006 by The National Academy of Sciences of the USA 2006 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1073/pnas.0601956103 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 10734 |
ExternalDocumentID | 10_1073_pnas_0601956103 16807294 103_28_10729 30049570 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DWIUU DZ F20 GJ KM PQEST X XFK XHC ZA5 CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c472t-91b56a103c5000fad73b78ea8b7b6df14085e47dd2903b8978d9868e1c0c8aa3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 20:57:29 EDT 2024 Fri Oct 25 09:37:08 EDT 2024 Fri Dec 06 02:52:39 EST 2024 Sat Sep 28 08:12:29 EDT 2024 Thu May 30 08:50:33 EDT 2019 Wed Nov 11 00:29:51 EST 2020 Tue Dec 10 23:05:31 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-91b56a103c5000fad73b78ea8b7b6df14085e47dd2903b8978d9868e1c0c8aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: CSL Ltd., Parkville, Victoria 3052, Australia. Present address: Division of Clinical Immunology, Hannover Medical School, 30625 Hannover, Germany. P.S., G.M.N.B., and N.S.W. contributed equally to this work. Edited by Peter Cresswell, Yale University School of Medicine, New Haven, CT, and approved May 26, 2006 Present address: Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, United Kingdom. Author contributions: F.R.C., K.S., W.R.H., and J.A.V. designed research; P.S., G.M.N.B., N.S.W., J.L.P., C.M.S., D.E.-S., G.D., F.K., M.L., and G.T.B. performed research; E.M. contributed new reagents/analytic tools; P.S., G.M.N.B., N.S.W., J.L.P., C.M.S., D.E.-S., M.L., G.T.B., and J.A.V. analyzed data; and W.R.H. and J.A.V. wrote the paper. |
OpenAccessLink | https://europepmc.org/articles/pmc1502299?pdf=render |
PMID | 16807294 |
PQID | 68637364 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pnas_primary_103_28_10729_fulltext pnas_primary_103_28_10729 crossref_primary_10_1073_pnas_0601956103 pubmed_primary_16807294 jstor_primary_30049570 proquest_miscellaneous_68637364 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1502299 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2006-07-11 |
PublicationDateYYYYMMDD | 2006-07-11 |
PublicationDate_xml | – month: 07 year: 2006 text: 2006-07-11 day: 11 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2006 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Acad Sciences – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 Shen Z. (e_1_3_4_32_2) 1997; 158 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_12_2 doi: 10.1182/blood-2004-05-1891 – ident: e_1_3_4_18_2 doi: 10.1073/pnas.0507484102 – ident: e_1_3_4_34_2 doi: 10.4049/jimmunol.168.5.2240 – ident: e_1_3_4_1_2 doi: 10.1016/S0065-2776(04)86007-3 – ident: e_1_3_4_29_2 doi: 10.1038/344065a0 – ident: e_1_3_4_19_2 doi: 10.4049/jimmunol.174.12.7676 – ident: e_1_3_4_37_2 doi: 10.1182/blood-2004-08-3105 – ident: e_1_3_4_16_2 doi: 10.1084/jem.20021598 – ident: e_1_3_4_42_2 doi: 10.1016/0092-8674(91)90448-8 – ident: e_1_3_4_39_2 doi: 10.1073/pnas.0509307103 – ident: e_1_3_4_45_2 doi: 10.1084/jem.171.2.377 – volume: 158 start-page: 2723 year: 1997 ident: e_1_3_4_32_2 publication-title: J. Immunol. doi: 10.4049/jimmunol.158.6.2723 contributor: fullname: Shen Z. – ident: e_1_3_4_11_2 doi: 10.1084/jem.20010898 – ident: e_1_3_4_9_2 doi: 10.1084/jem.20020161 – ident: e_1_3_4_41_2 doi: 10.1046/j.1440-1711.1998.00709.x – ident: e_1_3_4_5_2 doi: 10.1016/j.smim.2005.05.015 – ident: e_1_3_4_6_2 doi: 10.1111/j.0105-2896.2004.00142.x – ident: e_1_3_4_30_2 doi: 10.1046/j.1600-6135.2003.00246.x – ident: e_1_3_4_31_2 doi: 10.1038/ni1300 – ident: e_1_3_4_26_2 doi: 10.1182/blood-2003-02-0513 – ident: e_1_3_4_35_2 doi: 10.1073/pnas.112331099 – ident: e_1_3_4_10_2 doi: 10.4049/jimmunol.174.11.6592 – ident: e_1_3_4_14_2 doi: 10.4049/jimmunol.166.9.5327 – ident: e_1_3_4_21_2 doi: 10.1084/jem.20020861 – ident: e_1_3_4_33_2 doi: 10.1038/14058 – ident: e_1_3_4_4_2 doi: 10.1038/nri746 – ident: e_1_3_4_3_2 doi: 10.1016/j.cell.2005.08.018 – ident: e_1_3_4_38_2 doi: 10.1002/1521-4141(200209)32:9<2385::AID-IMMU2385>3.0.CO;2-V – ident: e_1_3_4_23_2 doi: 10.1093/intimm/dxh210 – ident: e_1_3_4_22_2 doi: 10.2337/diabetes.53.8.1995 – ident: e_1_3_4_24_2 doi: 10.4049/jimmunol.164.6.2978 – ident: e_1_3_4_28_2 doi: 10.4049/jimmunol.166.10.6099 – ident: e_1_3_4_8_2 doi: 10.1046/j.1365-2567.2002.01513.x – ident: e_1_3_4_2_2 doi: 10.1111/j.0105-2896.2005.00316.x – ident: e_1_3_4_15_2 doi: 10.1084/jem.194.6.769 – ident: e_1_3_4_27_2 doi: 10.1182/blood-2003-08-2729 – ident: e_1_3_4_17_2 doi: 10.1002/eji.200526100 – ident: e_1_3_4_20_2 doi: 10.1046/j.1440-1711.2002.01116.x – ident: e_1_3_4_25_2 doi: 10.1084/jem.180.5.1849 – ident: e_1_3_4_7_2 doi: 10.1084/jem.192.12.1685 – ident: e_1_3_4_36_2 doi: 10.1084/jem.20021542 – ident: e_1_3_4_43_2 doi: 10.4049/jimmunol.167.2.741 – ident: e_1_3_4_44_2 doi: 10.1084/jem.20021031 – ident: e_1_3_4_40_2 doi: 10.1016/0092-8674(94)90169-4 – ident: e_1_3_4_13_2 doi: 10.1084/jem.20020295 |
SSID | ssj0009580 |
Score | 2.4279022 |
Snippet | Mouse spleens contain three populations of conventional ($CD11c^{high}$) dendritic cells (DCs) that play distinct functions. The CD8⁺ DC are unique in that... Mouse spleens contain three populations of conventional (CD11c high ) dendritic cells (DCs) that play distinct functions. The CD8 + DC are unique in that they... Mouse spleens contain three populations of conventional (CD11c(high)) dendritic cells (DCs) that play distinct functions. The CD8(+) DC are unique in that they... Mouse spleens contain three populations of conventional (CD11c high ) dendritic cells (DCs) that play distinct functions. The CD8 + DC are unique in that they... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10729 |
SubjectTerms | Animals Antigens Antigens - metabolism Antigens, Bacterial - immunology Antigens, Bacterial - metabolism Biological Sciences CD8 Antigens - biosynthesis Cells, Cultured Cross priming Cross-Priming - immunology Cytometry Dendritic Cells - immunology Dendritic Cells - metabolism Latex Mice Mice, Inbred C57BL Mice, Knockout Mice, Mutant Strains Mice, Transgenic Microspheres Molecules Ova Ovalbumin - immunology Ovalbumin - metabolism Spleen Spleen - cytology Spleen - immunology Spleen - metabolism Spleen cells Splenocytes T lymphocytes Vaccination |
Title | The Dominant Role of CD8⁺ Dendritic Cells in Cross-Presentation Is Not Dictated by Antigen Capture |
URI | https://www.jstor.org/stable/30049570 http://www.pnas.org/content/103/28/10729.abstract https://www.ncbi.nlm.nih.gov/pubmed/16807294 https://search.proquest.com/docview/68637364 https://pubmed.ncbi.nlm.nih.gov/PMC1502299 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21PXFBtKWQAsVCHIpQduPYsZ0jWlpVSCAOReot8qeIRJ2IbA_997WdZLeL4MLZY8saj2fG9ptngPdOSIcLrXJc6TqnRtW5ItbltcbSKMFkbRPa4hu7-kG_3FQ3e1DNtTAJtK9Vu_C_bhe-_Zmwlf2tXs44seX3r6uQxJTBjS73YT-E3_mIvmHaFWPdSRncLy3pzOfDybL3clhEApJYzVmkL3SYiNTZdCcqjcDEyHYa5P-Wef4JoHwUkS6fwdMplUSfxikfwp71R3A4bdYBnU-M0h-OQQVjQKYbUS8oAgpR59Dqs_iIgtsx6bcDFK_wB9R6lKaY99u6JI_aAflujUyrY25qkLpHYaRI5Im07OMjxHO4vry4Xl3l0-cKuaa8XAcnpyomgxZ0_BLBScOJ4sJKobhixuHIfGYpN6asC6JEOGyaWjBhsS60kJKcwIHvvH0JyFFDcayDKpigkklhGFbWqZAJc20Uy-B81m3TjxQaTXr65qSJGm62K5LBSdL9Ri7ygdUVLzLIkui2P2lKEcco6wze_bOtcROEJoO38zI2YQNFlUpvu7uhYYIRThjN4MW4qNuBJuPIgO8s90YgUnPvtgSLTRTdk4We_nfPV_BkvOzhOcav4WD9-86-CenPWp3F4FOdJaN_AHapBJo |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoBLRYFCeNVCHIpQduPYsZ0j2lIt0FYcFqm3yK-ISK0Tke2Bf4_tJLtsBRfOHlvWeDwe2998A_CuFrLGmVYpLnSZUqPKVBFbp6XG0ijBZGkj2uKSLb_TL1fF1R4UUy5MBO1r1czc9c3MNT8itrK70fMJJzb_drHwQUzu3ej8HtwvCC_xdEnfcO2KIfMk9w6Y5nRi9OFk3jnZzwIFScjnzGIRHSYCeTbdOZcGaGLgO_Xyf4s970Io_ziTzh7BwRhMoo_DpA9hz7rHcDhu1x6djJzS75-A8uaATDvgXlCAFKK2RotT8QF5x2NivQMUHvF71DgUp5h228wkh5oeuXaNTKNDdGqQ-oX8SIHKE2nZhW-Ip7A6-7RaLNOxvEKqKc_X3s2pgkmvBR2KItTScKK4sFIorpipceA-s5Qbk5cZUcJfN00pmLBYZ1pISY5g37XOPgdUU0NxyITKmKCSSWEYVrZWPhbm2iiWwMmk26obSDSq-PnNSRU0XG1XJIGjqPuNXGAEKwueJZBE0W1_UuUijJGXCbz9Z1tVjyCaBI6nZaz8Fgoqlc62t33FBCOcMJrAs2FRtwONxpEA31nujUAg595t8TYbSbpHG33x3z2P4cFydXFenX--_PoSHg5PPzzF-BXsr3_e2tc-GFqrN9H0fwMuBAcJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXRIFCyqMW4lCEsnnYsZ0j2rIqr6qHIvUW-SkiUSdqtgf-PbaT7HYRXDh7bFnj8Xhsf_MNwFvLhS1yJdOiUnVKtKxTiY1Na1UILTkVtYloizN6-p18vqwub5X6iqB9JduF-3m1cO2PiK3sr1Q248Sy829LH8SU3o1mvbbZXbhXYW9k80V9w7fLx-yT0jthUpKZ1YfhrHdiWAQakpDTmcdCOpQHAm2yczaN8MTAeerl_xZ__gmjvHUurR7BwymgRB_Gie_DHeMew_60ZQd0PPFKv3sC0psE0t2IfUEBVog6i5Yn_D3yzkfHmgcoPOQPqHUoTjHtt9lJDrUDct0a6VaFCFUj-Qv5kQKdJ1KiD18RT-Fi9fFieZpOJRZSRVi59q5OVlR4LahQGMEKzbBk3AgumaTaFoH_zBCmdVnnWHJ_5dQ1p9wUKldcCHwAe65z5jkgSzQpQjZUTjkRVHBNC2ms9PEwU1rSBI5n3Tb9SKTRxA9whpug4Wa7IgkcRN1v5AIrWF2xPIEkim7746bkYYyyTuDNP9saOwFpEjial7Hx2yioVDjT3QwN5RQzTEkCz8ZF3Q40GUcCbGe5NwKBoHu3xdttJOqe7PTwv3sewf3zk1Xz9dPZlxfwYHz9YWlRvIS99fWNeeXjobV8HS3_N_1RCBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+dominant+role+of+CD8%2B+dendritic+cells+in+cross-presentation+is+not+dictated+by+antigen+capture&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Schnorrer%2C+Petra&rft.au=Behrens%2C+Georg+M.+N.&rft.au=Wilson%2C+Nicholas+S.&rft.au=Pooley%2C+Joanne+L.&rft.date=2006-07-11&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=103&rft.issue=28&rft.spage=10729&rft.epage=10734&rft_id=info:doi/10.1073%2Fpnas.0601956103&rft_id=info%3Apmid%2F16807294&rft.externalDBID=PMC1502299 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F28.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F28.cover.gif |