The Dominant Role of CD8⁺ Dendritic Cells in Cross-Presentation Is Not Dictated by Antigen Capture

Mouse spleens contain three populations of conventional ($CD11c^{high}$) dendritic cells (DCs) that play distinct functions. The CD8⁺ DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ab...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 103; no. 28; pp. 10729 - 10734
Main Authors Schnorrer, Petra, Behrens, Georg M. N., Wilson, Nicholas S., Pooley, Joanne L., Smith, Christopher M., El-Sukkari, Dima, Davey, Gayle, Kupresanin, Fiona, Li, Ming, Maraskovsky, Eugene, Belz, Gabrielle T., Carbone, Francis R., Shortman, Ken, Heath, William R., Villadangos, Jose A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 11.07.2006
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mouse spleens contain three populations of conventional ($CD11c^{high}$) dendritic cells (DCs) that play distinct functions. The CD8⁺ DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ability is because only the CD8⁺ DC can capture the antigens used in cross-presentation assays, or because this is the only DC population that possesses specialized machinery for cross-presentation. To solve this important question we examined the splenic DC subsets for their ability to both present via MHC class II molecules and cross-present via MHC class I using four different forms of the model antigen ovalbumin (OVA). These forms include a cell-associated form, a soluble form, OVA expressed in bacteria, or OVA bound to latex beads. With the exception of bacterial antigen, which was poorly cross-presented by all DC, all antigenic forms were cross-presented much more efficiently by the CD8⁺ DC. This pattern could not be attributed simply to a difference in antigen capture because all DC subsets presented the antigen via MHC class II. Indeed, direct assessments of endocytosis showed that CD8⁺ and CD8⁻ DC captured comparable amounts of soluble and bead-associated antigen, yet only the CD8⁺ DC cross-presented these antigenic forms. Our results indicate that cross-presentation requires specialized machinery that is expressed by CD8⁺ DC but largely absent from CD8⁻ DC. This conclusion has important implications for the design of vaccination strategies based on antigen targeting to DC.
AbstractList Mouse spleens contain three populations of conventional (CD11c high ) dendritic cells (DCs) that play distinct functions. The CD8 + DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ability is because only the CD8 + DC can capture the antigens used in cross-presentation assays, or because this is the only DC population that possesses specialized machinery for cross-presentation. To solve this important question we examined the splenic DC subsets for their ability to both present via MHC class II molecules and cross-present via MHC class I using four different forms of the model antigen ovalbumin (OVA). These forms include a cell-associated form, a soluble form, OVA expressed in bacteria, or OVA bound to latex beads. With the exception of bacterial antigen, which was poorly cross-presented by all DC, all antigenic forms were cross-presented much more efficiently by the CD8 + DC. This pattern could not be attributed simply to a difference in antigen capture because all DC subsets presented the antigen via MHC class II. Indeed, direct assessments of endocytosis showed that CD8 + and CD8 − DC captured comparable amounts of soluble and bead-associated antigen, yet only the CD8 + DC cross-presented these antigenic forms. Our results indicate that cross-presentation requires specialized machinery that is expressed by CD8 + DC but largely absent from CD8 − DC. This conclusion has important implications for the design of vaccination strategies based on antigen targeting to DC.
Mouse spleens contain three populations of conventional (CD11c high ) dendritic cells (DCs) that play distinct functions. The CD8 + DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ability is because only the CD8 + DC can capture the antigens used in cross-presentation assays, or because this is the only DC population that possesses specialized machinery for cross-presentation. To solve this important question we examined the splenic DC subsets for their ability to both present via MHC class II molecules and cross-present via MHC class I using four different forms of the model antigen ovalbumin (OVA). These forms include a cell-associated form, a soluble form, OVA expressed in bacteria, or OVA bound to latex beads. With the exception of bacterial antigen, which was poorly cross-presented by all DC, all antigenic forms were cross-presented much more efficiently by the CD8 + DC. This pattern could not be attributed simply to a difference in antigen capture because all DC subsets presented the antigen via MHC class II. Indeed, direct assessments of endocytosis showed that CD8 + and CD8 − DC captured comparable amounts of soluble and bead-associated antigen, yet only the CD8 + DC cross-presented these antigenic forms. Our results indicate that cross-presentation requires specialized machinery that is expressed by CD8 + DC but largely absent from CD8 − DC. This conclusion has important implications for the design of vaccination strategies based on antigen targeting to DC. antigen presentation mice endocytosis ovalbumin vaccines
Mouse spleens contain three populations of conventional ($CD11c^{high}$) dendritic cells (DCs) that play distinct functions. The CD8⁺ DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ability is because only the CD8⁺ DC can capture the antigens used in cross-presentation assays, or because this is the only DC population that possesses specialized machinery for cross-presentation. To solve this important question we examined the splenic DC subsets for their ability to both present via MHC class II molecules and cross-present via MHC class I using four different forms of the model antigen ovalbumin (OVA). These forms include a cell-associated form, a soluble form, OVA expressed in bacteria, or OVA bound to latex beads. With the exception of bacterial antigen, which was poorly cross-presented by all DC, all antigenic forms were cross-presented much more efficiently by the CD8⁺ DC. This pattern could not be attributed simply to a difference in antigen capture because all DC subsets presented the antigen via MHC class II. Indeed, direct assessments of endocytosis showed that CD8⁺ and CD8⁻ DC captured comparable amounts of soluble and bead-associated antigen, yet only the CD8⁺ DC cross-presented these antigenic forms. Our results indicate that cross-presentation requires specialized machinery that is expressed by CD8⁺ DC but largely absent from CD8⁻ DC. This conclusion has important implications for the design of vaccination strategies based on antigen targeting to DC.
Mouse spleens contain three populations of conventional (CD11c(high)) dendritic cells (DCs) that play distinct functions. The CD8(+) DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ability is because only the CD8(+) DC can capture the antigens used in cross-presentation assays, or because this is the only DC population that possesses specialized machinery for cross-presentation. To solve this important question we examined the splenic DC subsets for their ability to both present via MHC class II molecules and cross-present via MHC class I using four different forms of the model antigen ovalbumin (OVA). These forms include a cell-associated form, a soluble form, OVA expressed in bacteria, or OVA bound to latex beads. With the exception of bacterial antigen, which was poorly cross-presented by all DC, all antigenic forms were cross-presented much more efficiently by the CD8(+) DC. This pattern could not be attributed simply to a difference in antigen capture because all DC subsets presented the antigen via MHC class II. Indeed, direct assessments of endocytosis showed that CD8(+) and CD8(-) DC captured comparable amounts of soluble and bead-associated antigen, yet only the CD8(+) DC cross-presented these antigenic forms. Our results indicate that cross-presentation requires specialized machinery that is expressed by CD8(+) DC but largely absent from CD8(-) DC. This conclusion has important implications for the design of vaccination strategies based on antigen targeting to DC.
Author Wilson, Nicholas S.
Carbone, Francis R.
Li, Ming
Smith, Christopher M.
Behrens, Georg M. N.
Kupresanin, Fiona
Heath, William R.
El-Sukkari, Dima
Shortman, Ken
Pooley, Joanne L.
Villadangos, Jose A.
Davey, Gayle
Belz, Gabrielle T.
Schnorrer, Petra
Maraskovsky, Eugene
Author_xml – sequence: 1
  givenname: Petra
  surname: Schnorrer
  fullname: Schnorrer, Petra
– sequence: 2
  givenname: Georg M. N.
  surname: Behrens
  fullname: Behrens, Georg M. N.
– sequence: 3
  givenname: Nicholas S.
  surname: Wilson
  fullname: Wilson, Nicholas S.
– sequence: 4
  givenname: Joanne L.
  surname: Pooley
  fullname: Pooley, Joanne L.
– sequence: 5
  givenname: Christopher M.
  surname: Smith
  fullname: Smith, Christopher M.
– sequence: 6
  givenname: Dima
  surname: El-Sukkari
  fullname: El-Sukkari, Dima
– sequence: 7
  givenname: Gayle
  surname: Davey
  fullname: Davey, Gayle
– sequence: 8
  givenname: Fiona
  surname: Kupresanin
  fullname: Kupresanin, Fiona
– sequence: 9
  givenname: Ming
  surname: Li
  fullname: Li, Ming
– sequence: 10
  givenname: Eugene
  surname: Maraskovsky
  fullname: Maraskovsky, Eugene
– sequence: 11
  givenname: Gabrielle T.
  surname: Belz
  fullname: Belz, Gabrielle T.
– sequence: 12
  givenname: Francis R.
  surname: Carbone
  fullname: Carbone, Francis R.
– sequence: 13
  givenname: Ken
  surname: Shortman
  fullname: Shortman, Ken
– sequence: 14
  givenname: William R.
  surname: Heath
  fullname: Heath, William R.
– sequence: 15
  givenname: Jose A.
  surname: Villadangos
  fullname: Villadangos, Jose A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16807294$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQxi3Uim4LZ04gn5B6SDuOE_-5IFXZQitVgNDeLSdxWldZe7Gdih55LR6HJ8HRrrr01JOl8W---Wa-Y3TgvDMIvSNwRoDT843T8QwYEFkzAvQVWhCQpGCVhAO0ACh5IaqyOkLHMd4DgKwFvEZHhAngpawWqF_dGbz0a-u0S_iHHw32A26W4u_vP3hpXB9ssh1uzDhGbB1ugo-x-B5MNC7pZL3D1xF_9QkvbZcLpsftI75wyd6aTOtNmoJ5gw4HPUbzdveeoNXny1VzVdx8-3LdXNwUXcXLVEjS1kznNbo6Wx10z2nLhdGi5S3rB1KBqE3F-76UQFshueilYMKQDjqhNT1Bn7aym6ldm77LDoMe1SbYtQ6Pymurnv84e6du_YMiNZSllFng404g-J-TiUmtbezy6toZP0XFBKOcsiqD51uwm88RzPA0hICag1FzMGofTO748L-3Pb9LIgN4B8ydezmqSjFLlrO90xcQNUzjmMyvlNn3W_Y-Jh-eYApQyZoD_Qeu-K7w
CitedBy_id crossref_primary_10_1038_icb_2015_98
crossref_primary_10_3727_096368910X528094
crossref_primary_10_3389_fimmu_2024_1415573
crossref_primary_10_4049_jimmunol_1003557
crossref_primary_10_1038_icb_2012_29
crossref_primary_10_1073_pnas_1206039109
crossref_primary_10_1038_icb_2009_90
crossref_primary_10_3389_fimmu_2015_00267
crossref_primary_10_1073_pnas_0712394105
crossref_primary_10_1038_cmi_2016_49
crossref_primary_10_1038_cddis_2015_129
crossref_primary_10_1016_j_coi_2010_01_022
crossref_primary_10_1016_j_celrep_2024_113754
crossref_primary_10_1371_journal_pone_0021949
crossref_primary_10_1073_pnas_1002769107
crossref_primary_10_1186_s13071_017_2250_1
crossref_primary_10_1016_j_immuni_2008_09_002
crossref_primary_10_4049_jimmunol_0900726
crossref_primary_10_1038_icb_2010_161
crossref_primary_10_4049_jimmunol_182_1_283
crossref_primary_10_1371_journal_pone_0011216
crossref_primary_10_1016_j_coi_2006_11_017
crossref_primary_10_1038_s41467_020_15030_4
crossref_primary_10_1016_j_smim_2011_02_001
crossref_primary_10_1111_j_1582_4934_2008_00378_x
crossref_primary_10_3389_fimmu_2015_00035
crossref_primary_10_3389_fimmu_2019_00741
crossref_primary_10_3389_fmicb_2015_00557
crossref_primary_10_1111_cea_12755
crossref_primary_10_1080_14653240701306212
crossref_primary_10_1016_j_intimp_2020_106516
crossref_primary_10_1111_j_1365_2249_2011_04411_x
crossref_primary_10_18632_oncotarget_10183
crossref_primary_10_4049_jimmunol_181_4_2455
crossref_primary_10_1007_s10059_012_0058_6
crossref_primary_10_1126_science_aat5030
crossref_primary_10_1371_journal_pone_0093444
crossref_primary_10_1002_eji_201546023
crossref_primary_10_1111_j_1751_1097_2010_00859_x
crossref_primary_10_1021_acsbiomaterials_7b00440
crossref_primary_10_1002_eji_200939748
crossref_primary_10_1111_j_1582_4934_2010_01089_x
crossref_primary_10_1126_science_1136080
crossref_primary_10_4049_jimmunol_0900155
crossref_primary_10_1073_pnas_0810268105
crossref_primary_10_4049_jimmunol_180_5_3201
crossref_primary_10_1038_nri3254
crossref_primary_10_1093_infdis_jir656
crossref_primary_10_1016_j_smim_2023_101711
crossref_primary_10_3390_jof7080656
crossref_primary_10_4049_jimmunol_182_3_1260
crossref_primary_10_1126_science_1137971
crossref_primary_10_1016_j_vaccine_2018_04_047
crossref_primary_10_1002_eji_200838602
crossref_primary_10_4049_jimmunol_1002683
crossref_primary_10_1002_cmdc_202100656
crossref_primary_10_1016_j_immuni_2019_04_001
crossref_primary_10_3389_fimmu_2018_02604
crossref_primary_10_3389_fimmu_2020_01267
crossref_primary_10_1073_pnas_1019547108
crossref_primary_10_1073_pnas_0806727105
crossref_primary_10_1371_journal_pone_0083191
crossref_primary_10_1371_journal_ppat_1000198
crossref_primary_10_4049_jimmunol_178_11_6861
crossref_primary_10_1111_j_1365_2567_2007_02711_x
crossref_primary_10_1182_blood_2008_10_185884
crossref_primary_10_1016_j_immuni_2009_12_006
crossref_primary_10_1016_j_coi_2007_12_002
crossref_primary_10_1128_IAI_05350_11
crossref_primary_10_1186_1741_7007_8_37
crossref_primary_10_15252_emmm_201708123
crossref_primary_10_4049_jimmunol_1700909
crossref_primary_10_4049_jimmunol_1302312
crossref_primary_10_1111_j_0105_2896_2009_00882_x
crossref_primary_10_1038_ni_2555
crossref_primary_10_1099_vir_0_031815_0
crossref_primary_10_3389_fimmu_2019_02332
crossref_primary_10_1182_blood_2011_12_398164
crossref_primary_10_4049_jimmunol_2001426
crossref_primary_10_1084_jem_20100985
crossref_primary_10_1002_eji_200839035
crossref_primary_10_1038_srep43985
crossref_primary_10_1111_imr_12426
crossref_primary_10_1016_j_immuni_2010_12_011
crossref_primary_10_1371_journal_pone_0017657
crossref_primary_10_4049_jimmunol_0803473
crossref_primary_10_1016_j_cell_2007_01_024
crossref_primary_10_1016_j_tmrv_2008_02_002
crossref_primary_10_1016_j_bbcan_2020_188377
crossref_primary_10_4049_jimmunol_1004163
crossref_primary_10_1002_eji_201040419
crossref_primary_10_1172_JCI34584
crossref_primary_10_1182_blood_2008_05_155176
crossref_primary_10_1182_blood_2011_06_362582
crossref_primary_10_1016_j_semarthrit_2008_03_006
crossref_primary_10_1111_j_0105_2896_2009_00870_x
crossref_primary_10_1155_2019_7596786
crossref_primary_10_1111_j_1365_3024_2008_01020_x
crossref_primary_10_3390_ijms24129851
crossref_primary_10_4049_jimmunol_1001205
crossref_primary_10_1002_smll_202103984
crossref_primary_10_1111_j_1749_6632_2010_05746_x
crossref_primary_10_1084_jem_20170335
crossref_primary_10_1016_j_immuni_2009_01_013
crossref_primary_10_1186_s40425_019_0702_1
crossref_primary_10_1007_s00018_012_1100_8
crossref_primary_10_4049_jimmunol_180_7_4615
crossref_primary_10_1002_eji_201747372
crossref_primary_10_3389_fphys_2015_00001
crossref_primary_10_1016_j_immuni_2008_08_004
crossref_primary_10_1016_j_celrep_2020_107604
crossref_primary_10_1111_imcb_12757
crossref_primary_10_1172_JCI45416
crossref_primary_10_4049_jimmunol_0900409
crossref_primary_10_4049_jimmunol_0902707
crossref_primary_10_1182_blood_2012_07_445999
crossref_primary_10_1126_scitranslmed_3000359
crossref_primary_10_1016_j_immuni_2008_08_008
crossref_primary_10_1586_14760584_7_7_1019
crossref_primary_10_1038_icb_2011_71
crossref_primary_10_1016_j_it_2011_10_007
crossref_primary_10_1084_jem_20190835
crossref_primary_10_1016_j_immuni_2010_01_013
crossref_primary_10_1016_j_coi_2013_11_001
crossref_primary_10_4049_jimmunol_1402673
crossref_primary_10_2217_fon_12_125
crossref_primary_10_1111_j_1365_2567_2007_02785_x
crossref_primary_10_3109_08830181003602507
crossref_primary_10_4049_jimmunol_0802286
crossref_primary_10_1016_j_vaccine_2008_02_011
crossref_primary_10_1016_j_immuni_2011_08_011
crossref_primary_10_4049_jimmunol_1002084
crossref_primary_10_1084_jem_20070458
crossref_primary_10_1111_j_1600_065X_2008_00679_x
crossref_primary_10_1172_JCI77014
crossref_primary_10_1016_j_molimm_2018_01_014
crossref_primary_10_1016_j_cell_2015_08_004
crossref_primary_10_1038_ni_3535
crossref_primary_10_4049_jimmunol_1300975
crossref_primary_10_1172_JCI63417
crossref_primary_10_3389_fimmu_2019_00041
crossref_primary_10_1002_JLB_3MR0621_616RR
crossref_primary_10_1371_journal_pone_0191133
crossref_primary_10_1016_j_imlet_2007_09_007
crossref_primary_10_1002_eji_200838199
crossref_primary_10_1002_eji_201242799
crossref_primary_10_1111_j_1365_2567_2011_03457_x
crossref_primary_10_1016_j_jaut_2007_07_017
crossref_primary_10_1002_eji_200737578
crossref_primary_10_3389_fimmu_2023_1182553
crossref_primary_10_1084_jem_20062293
crossref_primary_10_4049_jimmunol_1602077
crossref_primary_10_1038_srep40942
crossref_primary_10_4049_jimmunol_0803364
crossref_primary_10_4049_jimmunol_1600692
crossref_primary_10_1016_j_celrep_2022_111205
crossref_primary_10_1128_CVI_00166_08
crossref_primary_10_4049_jimmunol_1102725
crossref_primary_10_1016_j_biomaterials_2014_10_053
crossref_primary_10_1016_j_cell_2010_09_039
crossref_primary_10_1189_jlb_0912452
crossref_primary_10_1016_j_immuni_2009_09_014
crossref_primary_10_1016_j_vetimm_2013_05_015
crossref_primary_10_1016_j_immuni_2015_07_020
crossref_primary_10_1189_jlb_0308154
crossref_primary_10_4049_jimmunol_1402535
crossref_primary_10_1016_j_omto_2021_10_003
crossref_primary_10_1371_journal_pone_0067796
crossref_primary_10_1084_jem_20080601
crossref_primary_10_1128_JVI_01510_08
crossref_primary_10_1002_adtp_202100144
crossref_primary_10_18632_oncotarget_15806
crossref_primary_10_1007_s00262_016_1830_9
crossref_primary_10_1016_j_ijbiomac_2020_05_160
crossref_primary_10_3390_md12074148
crossref_primary_10_4049_jimmunol_179_6_3425
crossref_primary_10_1016_j_coi_2009_03_011
crossref_primary_10_1073_pnas_0708622104
crossref_primary_10_1016_j_carbpol_2017_02_058
crossref_primary_10_4049_jimmunol_1303215
crossref_primary_10_1002_eji_200838302
crossref_primary_10_1007_s00005_015_0370_x
crossref_primary_10_1080_2162402X_2017_1325981
crossref_primary_10_1182_blood_2009_10_249458
crossref_primary_10_4049_jimmunol_0902987
crossref_primary_10_1084_jem_20092140
crossref_primary_10_1586_14760584_7_7_1069
crossref_primary_10_1080_2162402X_2020_1772663
crossref_primary_10_1371_journal_pone_0099396
crossref_primary_10_18632_oncotarget_8200
crossref_primary_10_4049_jimmunol_181_10_6984
crossref_primary_10_1126_science_1142955
crossref_primary_10_1084_jem_20091964
crossref_primary_10_1158_0008_5472_CAN_13_0777
crossref_primary_10_1038_cr_2010_94
crossref_primary_10_1038_nri1906
crossref_primary_10_3390_vaccines9010056
crossref_primary_10_1016_j_celrep_2016_07_076
crossref_primary_10_1016_j_jconrel_2019_09_013
crossref_primary_10_1073_pnas_0610383104
crossref_primary_10_4049_jimmunol_181_6_3811
crossref_primary_10_3858_emm_2009_41_2_008
crossref_primary_10_1172_JCI30605
crossref_primary_10_1016_j_molmed_2009_04_003
crossref_primary_10_3389_fmicb_2020_559105
crossref_primary_10_1038_ni_1724
crossref_primary_10_4049_jimmunol_179_7_4492
crossref_primary_10_1002_0471142735_im0307s86
crossref_primary_10_1016_j_vaccine_2009_11_018
crossref_primary_10_1371_journal_ppat_1001212
crossref_primary_10_1016_j_immuni_2009_06_022
crossref_primary_10_1038_icb_2008_15
crossref_primary_10_1002_smll_202006000
crossref_primary_10_4049_jimmunol_1700186
crossref_primary_10_1093_annonc_mdx237
crossref_primary_10_4049_jimmunol_181_5_3212
crossref_primary_10_1038_icb_2008_3
crossref_primary_10_1681_ASN_2019030236
crossref_primary_10_1111_imr_12432
crossref_primary_10_1038_s41467_021_26446_x
crossref_primary_10_1111_imr_12433
crossref_primary_10_1111_tra_12026
crossref_primary_10_1039_D1RA08335J
crossref_primary_10_1016_j_xcrm_2022_100534
crossref_primary_10_1634_stemcells_2007_0244
crossref_primary_10_1016_j_it_2013_02_007
crossref_primary_10_1182_blood_2011_06_363564
crossref_primary_10_12688_f1000research_9997_1
crossref_primary_10_1016_j_exphem_2009_06_001
crossref_primary_10_1182_blood_2011_03_342261
crossref_primary_10_1073_pnas_0909541107
crossref_primary_10_1111_imm_13171
crossref_primary_10_1016_j_vaccine_2011_06_071
crossref_primary_10_4049_jimmunol_1001737
crossref_primary_10_4049_jimmunol_1202798
crossref_primary_10_15252_embj_2020106228
crossref_primary_10_1002_eji_200737647
crossref_primary_10_3389_fimmu_2018_02874
crossref_primary_10_1084_jem_20071365
crossref_primary_10_1146_annurev_immunol_101320_031931
crossref_primary_10_1038_icb_2010_117
crossref_primary_10_1038_cdd_2016_24
crossref_primary_10_1172_JCI60644
crossref_primary_10_1084_jem_20070176
crossref_primary_10_1016_j_semcdb_2017_12_009
crossref_primary_10_3390_cells9030565
crossref_primary_10_1002_art_27625
crossref_primary_10_1038_nri2103
crossref_primary_10_1146_annurev_immunol_041015_055254
crossref_primary_10_4049_jimmunol_0901695
crossref_primary_10_1016_j_fmre_2023_03_018
crossref_primary_10_1016_j_ijbiomac_2018_04_144
crossref_primary_10_1002_adma_202110588
crossref_primary_10_1016_j_biomaterials_2020_120182
crossref_primary_10_1016_j_molimm_2019_12_016
crossref_primary_10_1371_journal_ppat_1004135
crossref_primary_10_4049_jimmunol_0804035
crossref_primary_10_1007_s12026_011_8237_7
crossref_primary_10_1016_j_biomaterials_2019_04_030
crossref_primary_10_1016_j_immuni_2011_06_012
crossref_primary_10_1002_eji_201141540
crossref_primary_10_1021_acs_bioconjchem_9b00091
crossref_primary_10_1016_j_dci_2020_103692
crossref_primary_10_1038_icb_2008_63
crossref_primary_10_1128_CVI_00291_10
crossref_primary_10_1172_JCI60659
crossref_primary_10_1038_s41409_018_0148_y
crossref_primary_10_1002_eji_201040482
crossref_primary_10_1093_intimm_dxn147
crossref_primary_10_1371_journal_pone_0009281
crossref_primary_10_1007_s10555_011_9283_2
crossref_primary_10_1016_j_ijbiomac_2018_09_187
crossref_primary_10_1002_eji_200939790
crossref_primary_10_1038_s41590_020_0746_x
crossref_primary_10_1073_pnas_0812247106
crossref_primary_10_1371_journal_pone_0002404
crossref_primary_10_1016_j_cimid_2011_09_009
crossref_primary_10_4049_jimmunol_1701593
crossref_primary_10_1084_jem_20160597
crossref_primary_10_1371_journal_pone_0001691
crossref_primary_10_3389_fimmu_2014_00140
crossref_primary_10_1111_j_1530_0277_2007_00479_x
crossref_primary_10_1128_JVI_00892_10
crossref_primary_10_1172_JCI60660
crossref_primary_10_1189_jlb_0610368
crossref_primary_10_4049_jimmunol_1500767
crossref_primary_10_3389_fimmu_2022_910705
crossref_primary_10_1016_j_isci_2019_08_024
crossref_primary_10_1038_s41577_018_0088_1
crossref_primary_10_1089_ars_2012_4557
crossref_primary_10_1155_2011_417403
crossref_primary_10_1371_journal_ppat_1005561
crossref_primary_10_4049_jimmunol_0900908
crossref_primary_10_4049_jimmunol_1001022
Cites_doi 10.1182/blood-2004-05-1891
10.1073/pnas.0507484102
10.4049/jimmunol.168.5.2240
10.1016/S0065-2776(04)86007-3
10.1038/344065a0
10.4049/jimmunol.174.12.7676
10.1182/blood-2004-08-3105
10.1084/jem.20021598
10.1016/0092-8674(91)90448-8
10.1073/pnas.0509307103
10.1084/jem.171.2.377
10.4049/jimmunol.158.6.2723
10.1084/jem.20010898
10.1084/jem.20020161
10.1046/j.1440-1711.1998.00709.x
10.1016/j.smim.2005.05.015
10.1111/j.0105-2896.2004.00142.x
10.1046/j.1600-6135.2003.00246.x
10.1038/ni1300
10.1182/blood-2003-02-0513
10.1073/pnas.112331099
10.4049/jimmunol.174.11.6592
10.4049/jimmunol.166.9.5327
10.1084/jem.20020861
10.1038/14058
10.1038/nri746
10.1016/j.cell.2005.08.018
10.1002/1521-4141(200209)32:9<2385::AID-IMMU2385>3.0.CO;2-V
10.1093/intimm/dxh210
10.2337/diabetes.53.8.1995
10.4049/jimmunol.164.6.2978
10.4049/jimmunol.166.10.6099
10.1046/j.1365-2567.2002.01513.x
10.1111/j.0105-2896.2005.00316.x
10.1084/jem.194.6.769
10.1182/blood-2003-08-2729
10.1002/eji.200526100
10.1046/j.1440-1711.2002.01116.x
10.1084/jem.180.5.1849
10.1084/jem.192.12.1685
10.1084/jem.20021542
10.4049/jimmunol.167.2.741
10.1084/jem.20021031
10.1016/0092-8674(94)90169-4
10.1084/jem.20020295
ContentType Journal Article
Copyright Copyright 2006 National Academy of Sciences of the United States of America
2006 by The National Academy of Sciences of the USA 2006
Copyright_xml – notice: Copyright 2006 National Academy of Sciences of the United States of America
– notice: 2006 by The National Academy of Sciences of the USA 2006
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1073/pnas.0601956103
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList


MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 10734
ExternalDocumentID 10_1073_pnas_0601956103
16807294
103_28_10729
30049570
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DWIUU
DZ
F20
GJ
KM
PQEST
X
XFK
XHC
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c472t-91b56a103c5000fad73b78ea8b7b6df14085e47dd2903b8978d9868e1c0c8aa3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 20:57:29 EDT 2024
Fri Oct 25 09:37:08 EDT 2024
Fri Dec 06 02:52:39 EST 2024
Sat Sep 28 08:12:29 EDT 2024
Thu May 30 08:50:33 EDT 2019
Wed Nov 11 00:29:51 EST 2020
Tue Dec 10 23:05:31 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-91b56a103c5000fad73b78ea8b7b6df14085e47dd2903b8978d9868e1c0c8aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: CSL Ltd., Parkville, Victoria 3052, Australia.
Present address: Division of Clinical Immunology, Hannover Medical School, 30625 Hannover, Germany.
P.S., G.M.N.B., and N.S.W. contributed equally to this work.
Edited by Peter Cresswell, Yale University School of Medicine, New Haven, CT, and approved May 26, 2006
Present address: Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, United Kingdom.
Author contributions: F.R.C., K.S., W.R.H., and J.A.V. designed research; P.S., G.M.N.B., N.S.W., J.L.P., C.M.S., D.E.-S., G.D., F.K., M.L., and G.T.B. performed research; E.M. contributed new reagents/analytic tools; P.S., G.M.N.B., N.S.W., J.L.P., C.M.S., D.E.-S., M.L., G.T.B., and J.A.V. analyzed data; and W.R.H. and J.A.V. wrote the paper.
OpenAccessLink https://europepmc.org/articles/pmc1502299?pdf=render
PMID 16807294
PQID 68637364
PQPubID 23479
PageCount 6
ParticipantIDs pnas_primary_103_28_10729_fulltext
pnas_primary_103_28_10729
crossref_primary_10_1073_pnas_0601956103
pubmed_primary_16807294
jstor_primary_30049570
proquest_miscellaneous_68637364
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1502299
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2006-07-11
PublicationDateYYYYMMDD 2006-07-11
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-11
  day: 11
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2006
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences
– name: National Acad Sciences
– name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
Shen Z. (e_1_3_4_32_2) 1997; 158
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_12_2
  doi: 10.1182/blood-2004-05-1891
– ident: e_1_3_4_18_2
  doi: 10.1073/pnas.0507484102
– ident: e_1_3_4_34_2
  doi: 10.4049/jimmunol.168.5.2240
– ident: e_1_3_4_1_2
  doi: 10.1016/S0065-2776(04)86007-3
– ident: e_1_3_4_29_2
  doi: 10.1038/344065a0
– ident: e_1_3_4_19_2
  doi: 10.4049/jimmunol.174.12.7676
– ident: e_1_3_4_37_2
  doi: 10.1182/blood-2004-08-3105
– ident: e_1_3_4_16_2
  doi: 10.1084/jem.20021598
– ident: e_1_3_4_42_2
  doi: 10.1016/0092-8674(91)90448-8
– ident: e_1_3_4_39_2
  doi: 10.1073/pnas.0509307103
– ident: e_1_3_4_45_2
  doi: 10.1084/jem.171.2.377
– volume: 158
  start-page: 2723
  year: 1997
  ident: e_1_3_4_32_2
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.158.6.2723
  contributor:
    fullname: Shen Z.
– ident: e_1_3_4_11_2
  doi: 10.1084/jem.20010898
– ident: e_1_3_4_9_2
  doi: 10.1084/jem.20020161
– ident: e_1_3_4_41_2
  doi: 10.1046/j.1440-1711.1998.00709.x
– ident: e_1_3_4_5_2
  doi: 10.1016/j.smim.2005.05.015
– ident: e_1_3_4_6_2
  doi: 10.1111/j.0105-2896.2004.00142.x
– ident: e_1_3_4_30_2
  doi: 10.1046/j.1600-6135.2003.00246.x
– ident: e_1_3_4_31_2
  doi: 10.1038/ni1300
– ident: e_1_3_4_26_2
  doi: 10.1182/blood-2003-02-0513
– ident: e_1_3_4_35_2
  doi: 10.1073/pnas.112331099
– ident: e_1_3_4_10_2
  doi: 10.4049/jimmunol.174.11.6592
– ident: e_1_3_4_14_2
  doi: 10.4049/jimmunol.166.9.5327
– ident: e_1_3_4_21_2
  doi: 10.1084/jem.20020861
– ident: e_1_3_4_33_2
  doi: 10.1038/14058
– ident: e_1_3_4_4_2
  doi: 10.1038/nri746
– ident: e_1_3_4_3_2
  doi: 10.1016/j.cell.2005.08.018
– ident: e_1_3_4_38_2
  doi: 10.1002/1521-4141(200209)32:9<2385::AID-IMMU2385>3.0.CO;2-V
– ident: e_1_3_4_23_2
  doi: 10.1093/intimm/dxh210
– ident: e_1_3_4_22_2
  doi: 10.2337/diabetes.53.8.1995
– ident: e_1_3_4_24_2
  doi: 10.4049/jimmunol.164.6.2978
– ident: e_1_3_4_28_2
  doi: 10.4049/jimmunol.166.10.6099
– ident: e_1_3_4_8_2
  doi: 10.1046/j.1365-2567.2002.01513.x
– ident: e_1_3_4_2_2
  doi: 10.1111/j.0105-2896.2005.00316.x
– ident: e_1_3_4_15_2
  doi: 10.1084/jem.194.6.769
– ident: e_1_3_4_27_2
  doi: 10.1182/blood-2003-08-2729
– ident: e_1_3_4_17_2
  doi: 10.1002/eji.200526100
– ident: e_1_3_4_20_2
  doi: 10.1046/j.1440-1711.2002.01116.x
– ident: e_1_3_4_25_2
  doi: 10.1084/jem.180.5.1849
– ident: e_1_3_4_7_2
  doi: 10.1084/jem.192.12.1685
– ident: e_1_3_4_36_2
  doi: 10.1084/jem.20021542
– ident: e_1_3_4_43_2
  doi: 10.4049/jimmunol.167.2.741
– ident: e_1_3_4_44_2
  doi: 10.1084/jem.20021031
– ident: e_1_3_4_40_2
  doi: 10.1016/0092-8674(94)90169-4
– ident: e_1_3_4_13_2
  doi: 10.1084/jem.20020295
SSID ssj0009580
Score 2.4279022
Snippet Mouse spleens contain three populations of conventional ($CD11c^{high}$) dendritic cells (DCs) that play distinct functions. The CD8⁺ DC are unique in that...
Mouse spleens contain three populations of conventional (CD11c high ) dendritic cells (DCs) that play distinct functions. The CD8 + DC are unique in that they...
Mouse spleens contain three populations of conventional (CD11c(high)) dendritic cells (DCs) that play distinct functions. The CD8(+) DC are unique in that they...
Mouse spleens contain three populations of conventional (CD11c high ) dendritic cells (DCs) that play distinct functions. The CD8 + DC are unique in that they...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10729
SubjectTerms Animals
Antigens
Antigens - metabolism
Antigens, Bacterial - immunology
Antigens, Bacterial - metabolism
Biological Sciences
CD8 Antigens - biosynthesis
Cells, Cultured
Cross priming
Cross-Priming - immunology
Cytometry
Dendritic Cells - immunology
Dendritic Cells - metabolism
Latex
Mice
Mice, Inbred C57BL
Mice, Knockout
Mice, Mutant Strains
Mice, Transgenic
Microspheres
Molecules
Ova
Ovalbumin - immunology
Ovalbumin - metabolism
Spleen
Spleen - cytology
Spleen - immunology
Spleen - metabolism
Spleen cells
Splenocytes
T lymphocytes
Vaccination
Title The Dominant Role of CD8⁺ Dendritic Cells in Cross-Presentation Is Not Dictated by Antigen Capture
URI https://www.jstor.org/stable/30049570
http://www.pnas.org/content/103/28/10729.abstract
https://www.ncbi.nlm.nih.gov/pubmed/16807294
https://search.proquest.com/docview/68637364
https://pubmed.ncbi.nlm.nih.gov/PMC1502299
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21PXFBtKWQAsVCHIpQduPYsZ0jWlpVSCAOReot8qeIRJ2IbA_997WdZLeL4MLZY8saj2fG9ptngPdOSIcLrXJc6TqnRtW5ItbltcbSKMFkbRPa4hu7-kG_3FQ3e1DNtTAJtK9Vu_C_bhe-_Zmwlf2tXs44seX3r6uQxJTBjS73YT-E3_mIvmHaFWPdSRncLy3pzOfDybL3clhEApJYzVmkL3SYiNTZdCcqjcDEyHYa5P-Wef4JoHwUkS6fwdMplUSfxikfwp71R3A4bdYBnU-M0h-OQQVjQKYbUS8oAgpR59Dqs_iIgtsx6bcDFK_wB9R6lKaY99u6JI_aAflujUyrY25qkLpHYaRI5Im07OMjxHO4vry4Xl3l0-cKuaa8XAcnpyomgxZ0_BLBScOJ4sJKobhixuHIfGYpN6asC6JEOGyaWjBhsS60kJKcwIHvvH0JyFFDcayDKpigkklhGFbWqZAJc20Uy-B81m3TjxQaTXr65qSJGm62K5LBSdL9Ri7ygdUVLzLIkui2P2lKEcco6wze_bOtcROEJoO38zI2YQNFlUpvu7uhYYIRThjN4MW4qNuBJuPIgO8s90YgUnPvtgSLTRTdk4We_nfPV_BkvOzhOcav4WD9-86-CenPWp3F4FOdJaN_AHapBJo
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoBLRYFCeNVCHIpQduPYsZ0j2lIt0FYcFqm3yK-ISK0Tke2Bf4_tJLtsBRfOHlvWeDwe2998A_CuFrLGmVYpLnSZUqPKVBFbp6XG0ijBZGkj2uKSLb_TL1fF1R4UUy5MBO1r1czc9c3MNT8itrK70fMJJzb_drHwQUzu3ej8HtwvCC_xdEnfcO2KIfMk9w6Y5nRi9OFk3jnZzwIFScjnzGIRHSYCeTbdOZcGaGLgO_Xyf4s970Io_ziTzh7BwRhMoo_DpA9hz7rHcDhu1x6djJzS75-A8uaATDvgXlCAFKK2RotT8QF5x2NivQMUHvF71DgUp5h228wkh5oeuXaNTKNDdGqQ-oX8SIHKE2nZhW-Ip7A6-7RaLNOxvEKqKc_X3s2pgkmvBR2KItTScKK4sFIorpipceA-s5Qbk5cZUcJfN00pmLBYZ1pISY5g37XOPgdUU0NxyITKmKCSSWEYVrZWPhbm2iiWwMmk26obSDSq-PnNSRU0XG1XJIGjqPuNXGAEKwueJZBE0W1_UuUijJGXCbz9Z1tVjyCaBI6nZaz8Fgoqlc62t33FBCOcMJrAs2FRtwONxpEA31nujUAg595t8TYbSbpHG33x3z2P4cFydXFenX--_PoSHg5PPzzF-BXsr3_e2tc-GFqrN9H0fwMuBAcJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXRIFCyqMW4lCEsnnYsZ0j2rIqr6qHIvUW-SkiUSdqtgf-PbaT7HYRXDh7bFnj8Xhsf_MNwFvLhS1yJdOiUnVKtKxTiY1Na1UILTkVtYloizN6-p18vqwub5X6iqB9JduF-3m1cO2PiK3sr1Q248Sy829LH8SU3o1mvbbZXbhXYW9k80V9w7fLx-yT0jthUpKZ1YfhrHdiWAQakpDTmcdCOpQHAm2yczaN8MTAeerl_xZ__gmjvHUurR7BwymgRB_Gie_DHeMew_60ZQd0PPFKv3sC0psE0t2IfUEBVog6i5Yn_D3yzkfHmgcoPOQPqHUoTjHtt9lJDrUDct0a6VaFCFUj-Qv5kQKdJ1KiD18RT-Fi9fFieZpOJRZSRVi59q5OVlR4LahQGMEKzbBk3AgumaTaFoH_zBCmdVnnWHJ_5dQ1p9wUKldcCHwAe65z5jkgSzQpQjZUTjkRVHBNC2ms9PEwU1rSBI5n3Tb9SKTRxA9whpug4Wa7IgkcRN1v5AIrWF2xPIEkim7746bkYYyyTuDNP9saOwFpEjial7Hx2yioVDjT3QwN5RQzTEkCz8ZF3Q40GUcCbGe5NwKBoHu3xdttJOqe7PTwv3sewf3zk1Xz9dPZlxfwYHz9YWlRvIS99fWNeeXjobV8HS3_N_1RCBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+dominant+role+of+CD8%2B+dendritic+cells+in+cross-presentation+is+not+dictated+by+antigen+capture&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Schnorrer%2C+Petra&rft.au=Behrens%2C+Georg+M.+N.&rft.au=Wilson%2C+Nicholas+S.&rft.au=Pooley%2C+Joanne+L.&rft.date=2006-07-11&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=103&rft.issue=28&rft.spage=10729&rft.epage=10734&rft_id=info:doi/10.1073%2Fpnas.0601956103&rft_id=info%3Apmid%2F16807294&rft.externalDBID=PMC1502299
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F28.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F28.cover.gif