Fabrication of Scaffolds for Bone-Tissue Regeneration
The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bo...
Saved in:
Published in | Materials Vol. 12; no. 4; p. 568 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
14.02.2019
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1996-1944 1996-1944 |
DOI | 10.3390/ma12040568 |
Cover
Loading…
Abstract | The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bone tissue by scaffolds, providing a suitable environment for tissue regeneration and repair. Strategies and materials used in oral regenerative therapies correspond to techniques generally used in bone tissue engineering. Researchers are focusing on developing and improving new materials to imitate the native biological neighborhood as authentically as possible. The most promising is a combination of cells and matrices (scaffolds) that can be fabricated from different kinds of materials. This review summarizes currently available materials and manufacturing technologies of scaffolds for bone-tissue regeneration. |
---|---|
AbstractList | The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bone tissue by scaffolds, providing a suitable environment for tissue regeneration and repair. Strategies and materials used in oral regenerative therapies correspond to techniques generally used in bone tissue engineering. Researchers are focusing on developing and improving new materials to imitate the native biological neighborhood as authentically as possible. The most promising is a combination of cells and matrices (scaffolds) that can be fabricated from different kinds of materials. This review summarizes currently available materials and manufacturing technologies of scaffolds for bone-tissue regeneration. The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bone tissue by scaffolds, providing a suitable environment for tissue regeneration and repair. Strategies and materials used in oral regenerative therapies correspond to techniques generally used in bone tissue engineering. Researchers are focusing on developing and improving new materials to imitate the native biological neighborhood as authentically as possible. The most promising is a combination of cells and matrices (scaffolds) that can be fabricated from different kinds of materials. This review summarizes currently available materials and manufacturing technologies of scaffolds for bone-tissue regeneration.The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bone tissue by scaffolds, providing a suitable environment for tissue regeneration and repair. Strategies and materials used in oral regenerative therapies correspond to techniques generally used in bone tissue engineering. Researchers are focusing on developing and improving new materials to imitate the native biological neighborhood as authentically as possible. The most promising is a combination of cells and matrices (scaffolds) that can be fabricated from different kinds of materials. This review summarizes currently available materials and manufacturing technologies of scaffolds for bone-tissue regeneration. The term “tissue engineering”, where engineering and the life sciences are interconnected, was introduced in 1988 in the National Science Foundation workshop as “the application of principles and methods of engineering and life sciences towards the fundamental understanding of structure–function relationships in normal and pathological mammalian tissues and the development of biological substitutes to restore, maintain or improve tissue function.” GBR, also called “membrane protected bone regeneration” [17], uses barrier membranes in the treatment of alveolar ridge defects and promotes bone growth into tissue defects adjacent to dental implants. The mechanical, biological and chemical properties and functions of bones depend on the irregular but optimized structure, making bone material heterogeneous and anisotropic, as can be seen at different levels (Figure 1) [18,19]. Osteoblasts, Osteocytes, Osteoclasts and Bone-Lining Cells During life, two inseparable processes—bone resorbing by osteoclasts and bone formation by osteoblasts—happen alongside remodeling of the skeleton with optimal mechanical integrity. |
Author | Chocholata, Petra Babuska, Vaclav Kulda, Vlastimil |
AuthorAffiliation | Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic; petra.chocholata@lfp.cuni.cz (P.C.); vlastimil.kulda@lfp.cuni.cz (V.K.) |
AuthorAffiliation_xml | – name: Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic; petra.chocholata@lfp.cuni.cz (P.C.); vlastimil.kulda@lfp.cuni.cz (V.K.) |
Author_xml | – sequence: 1 givenname: Petra orcidid: 0000-0001-9519-2292 surname: Chocholata fullname: Chocholata, Petra – sequence: 2 givenname: Vlastimil orcidid: 0000-0001-7926-994X surname: Kulda fullname: Kulda, Vlastimil – sequence: 3 givenname: Vaclav orcidid: 0000-0001-9296-9414 surname: Babuska fullname: Babuska, Vaclav |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30769821$$D View this record in MEDLINE/PubMed |
BookMark | eNptkV9LwzAUxYNM3NS9-AGk4IsI1fxr0rwIOpwKA0Hnc0jbdGa0zUxawW9v3Oacw7wkcH8599xzD0GvsY0G4ATBS0IEvKoVwpDChKV7YICEYDESlPa23n0w9H4OwyEEpVgcgD6BnIkUowFIxipzJletsU1ky-glV2Vpq8JHpXXRbegVT433nY6e9Uw32i3JY7Bfqsrr4fo-Aq_ju-noIZ483T-ObiZxTjluY1ZwFOSKQmClYAlLoQQlKqUpYVxxhmDGSaIoJzTY0ZAxGmjNg7tcJVlGjsD1SnfRZbUuct20TlVy4Uyt3Ke0ysi_lca8yZn9kIwilnASBM7XAs6-d9q3sjY-11WlGm07LzGGiCNGMA7o2Q46t51rwngSE0KowAjzQJ1uO9pY-Uk0ABcrIHfWe6fLDYKg_N6Y_N1YgOEOnJt2mXCYxlT_ffkCSf2WVQ |
CitedBy_id | crossref_primary_10_3390_cryst14050463 crossref_primary_10_1016_j_msec_2022_112690 crossref_primary_10_3390_polym13203470 crossref_primary_10_3390_md19100551 crossref_primary_10_1016_j_ceramint_2021_11_206 crossref_primary_10_1039_D0TB02019B crossref_primary_10_1016_j_bioactmat_2019_10_005 crossref_primary_10_3390_polym12122858 crossref_primary_10_1007_s11696_023_02786_4 crossref_primary_10_1089_3dp_2022_0216 crossref_primary_10_3390_jfb13010001 crossref_primary_10_1016_j_bone_2020_115449 crossref_primary_10_1016_j_ijpharm_2023_123093 crossref_primary_10_2478_ama_2024_0072 crossref_primary_10_3390_bioengineering7040165 crossref_primary_10_1016_j_msec_2021_112287 crossref_primary_10_1080_09205063_2021_1952382 crossref_primary_10_3390_polym14224931 crossref_primary_10_4055_jkoa_2022_57_6_447 crossref_primary_10_3390_polym14163335 crossref_primary_10_1166_jbt_2023_3279 crossref_primary_10_1177_08839115251318682 crossref_primary_10_1080_21655979_2024_2401269 crossref_primary_10_25100_iyc_v25i3_12572 crossref_primary_10_1002_term_3277 crossref_primary_10_3390_ijms25136843 crossref_primary_10_1080_15583724_2021_1896543 crossref_primary_10_1177_08853282211066246 crossref_primary_10_1021_acsami_9b20697 crossref_primary_10_18321_ectj1077 crossref_primary_10_1016_j_msec_2019_110399 crossref_primary_10_1016_j_oceram_2024_100714 crossref_primary_10_1016_j_ijbiomac_2020_04_059 crossref_primary_10_1016_j_pmatsci_2023_101087 crossref_primary_10_1007_s13346_022_01191_w crossref_primary_10_1038_s41598_021_00024_z crossref_primary_10_3390_polym14224807 crossref_primary_10_1080_10717544_2024_2391001 crossref_primary_10_1016_j_msec_2020_110848 crossref_primary_10_1088_1757_899X_857_1_012023 crossref_primary_10_1186_s12951_023_02115_7 crossref_primary_10_3390_antibiotics12061004 crossref_primary_10_3390_ma15010184 crossref_primary_10_4252_wjsc_v12_i9_897 crossref_primary_10_3389_fchem_2022_1051678 crossref_primary_10_1002_anbr_202000088 crossref_primary_10_1007_s13534_020_00161_w crossref_primary_10_2147_SCCAA_S314107 crossref_primary_10_1007_s00449_024_03042_z crossref_primary_10_3390_compounds4010005 crossref_primary_10_1007_s40964_022_00362_y crossref_primary_10_1007_s00170_022_10334_9 crossref_primary_10_1016_j_aanat_2020_151578 crossref_primary_10_1134_S1990519X23050061 crossref_primary_10_14302_issn_2831_8846_j3dpa_20_3438 crossref_primary_10_3390_ma13163577 crossref_primary_10_1021_acs_biomac_3c00263 crossref_primary_10_3390_molecules25204802 crossref_primary_10_1208_s12249_024_02855_1 crossref_primary_10_1016_j_actbio_2020_12_032 crossref_primary_10_3390_ijms23062907 crossref_primary_10_1038_s41598_023_38146_1 crossref_primary_10_1039_D1BM01756J crossref_primary_10_1007_s11837_023_05750_5 crossref_primary_10_1016_j_compositesb_2022_110427 crossref_primary_10_1007_s00170_021_06773_5 crossref_primary_10_3390_ijms21165719 crossref_primary_10_3390_ijms22105236 crossref_primary_10_1038_s44385_024_00002_w crossref_primary_10_1021_acsbiomaterials_1c00920 crossref_primary_10_2174_2666145416666230228120343 crossref_primary_10_1089_ten_teb_2020_0254 crossref_primary_10_3390_coatings11080908 crossref_primary_10_3390_molecules29112498 crossref_primary_10_1080_09205063_2025_2455234 crossref_primary_10_1016_j_mtcomm_2022_104229 crossref_primary_10_3390_cells11203251 crossref_primary_10_3390_biology11050751 crossref_primary_10_1016_j_ceramint_2022_07_159 crossref_primary_10_1186_s40902_020_00263_6 crossref_primary_10_1021_acsami_4c15719 crossref_primary_10_1016_j_colsurfb_2022_112581 crossref_primary_10_1016_j_ijbiomac_2022_07_140 crossref_primary_10_1155_ijod_4990295 crossref_primary_10_1088_1748_605X_ad6ac4 crossref_primary_10_22363_2313_0245_2024_28_1_9_22 crossref_primary_10_3390_bioengineering12010046 crossref_primary_10_1016_j_msec_2021_112192 crossref_primary_10_1016_j_nxmate_2024_100187 crossref_primary_10_1016_j_cclet_2023_109197 crossref_primary_10_1007_s12257_019_0086_6 crossref_primary_10_1007_s13770_023_00577_2 crossref_primary_10_1186_s13036_021_00282_5 crossref_primary_10_4028_p_pt5cSD crossref_primary_10_3390_ijms22179564 crossref_primary_10_1016_j_carbpol_2021_118351 crossref_primary_10_1590_0104_1428_20220121 crossref_primary_10_1007_s11665_024_10545_z crossref_primary_10_1016_j_ceramint_2024_11_349 crossref_primary_10_35812_CelluloseChemTechnol_2022_56_33 crossref_primary_10_1016_j_cej_2024_152703 crossref_primary_10_1016_j_msec_2021_112062 crossref_primary_10_1007_s12015_023_10545_x crossref_primary_10_1016_j_rineng_2024_101862 crossref_primary_10_1016_j_jmrt_2023_05_076 crossref_primary_10_3390_app10103451 crossref_primary_10_1016_j_compstruct_2021_114983 crossref_primary_10_3390_ijms22126387 crossref_primary_10_1016_j_jocs_2024_102314 crossref_primary_10_3390_polym16010066 crossref_primary_10_1002_chem_202004529 crossref_primary_10_3390_ma15010099 crossref_primary_10_3390_gels9020100 crossref_primary_10_1002_jbm_b_35100 crossref_primary_10_56294_mw2023148 crossref_primary_10_3390_ijms21176418 crossref_primary_10_3389_fbioe_2023_1232427 crossref_primary_10_4028_www_scientific_net_MSF_981_285 crossref_primary_10_1088_1748_605X_ac265d crossref_primary_10_26873_SVR_1829_2024 crossref_primary_10_1007_s13770_021_00419_z crossref_primary_10_1007_s10853_021_06718_z crossref_primary_10_3389_fmolb_2021_682581 crossref_primary_10_1016_j_msec_2020_111634 crossref_primary_10_1016_j_compscitech_2020_108069 crossref_primary_10_1016_j_smaim_2021_07_006 crossref_primary_10_3390_app9204296 crossref_primary_10_1016_j_ijbiomac_2020_10_078 crossref_primary_10_2217_rme_2020_0086 crossref_primary_10_1016_j_engreg_2022_11_004 crossref_primary_10_3390_ijms22094454 crossref_primary_10_1016_j_eurpolymj_2020_110176 crossref_primary_10_3390_jcm9124008 crossref_primary_10_1016_j_bioadv_2022_212766 crossref_primary_10_1177_22808000241266487 crossref_primary_10_1002_cbf_3924 crossref_primary_10_1021_acs_biomac_1c01235 crossref_primary_10_1016_j_eurpolymj_2023_112168 crossref_primary_10_1021_acsbiomaterials_4c02118 crossref_primary_10_1007_s40089_020_00318_6 crossref_primary_10_3390_app9081713 crossref_primary_10_1039_D0RA04287K crossref_primary_10_1039_D3TB01847D crossref_primary_10_1080_09205063_2022_2068943 crossref_primary_10_1016_j_ceramint_2021_11_268 crossref_primary_10_3390_biomedicines11020325 crossref_primary_10_1016_j_msec_2019_110301 crossref_primary_10_1007_s10856_022_06676_1 crossref_primary_10_1021_acsami_0c04261 crossref_primary_10_1002_adfm_202010609 crossref_primary_10_1007_s10439_021_02752_9 crossref_primary_10_1016_j_ibiod_2023_105599 crossref_primary_10_3390_polym15020354 crossref_primary_10_1088_1361_6528_ac5017 crossref_primary_10_3389_fbioe_2021_647007 crossref_primary_10_1039_D3MA01049J crossref_primary_10_3390_ma14010109 crossref_primary_10_1002_app_52228 crossref_primary_10_1007_s42452_020_03218_8 crossref_primary_10_1016_j_ccr_2022_214770 crossref_primary_10_3390_polym15051087 crossref_primary_10_3390_polym14163420 crossref_primary_10_1515_pac_2024_0255 crossref_primary_10_3390_polym15051082 crossref_primary_10_3390_membranes9120163 crossref_primary_10_2144_fsoa_2023_0061 crossref_primary_10_3390_bioengineering6030067 crossref_primary_10_3390_polym12040905 crossref_primary_10_1038_s41598_023_50849_z crossref_primary_10_1016_j_bioadv_2022_212733 crossref_primary_10_1016_j_ijbiomac_2023_124258 crossref_primary_10_4028_p_c4c2s2 crossref_primary_10_3390_biomimetics5030034 crossref_primary_10_1021_acsbiomaterials_3c01105 crossref_primary_10_1080_09205063_2022_2065409 crossref_primary_10_3390_jfb15090243 crossref_primary_10_1016_j_colsurfa_2022_129886 crossref_primary_10_3390_polym12020295 crossref_primary_10_3390_polym12122806 crossref_primary_10_7759_cureus_67067 crossref_primary_10_3390_membranes14090193 crossref_primary_10_1007_s40883_024_00381_x crossref_primary_10_1364_BOE_401740 crossref_primary_10_1016_j_ymeth_2022_10_010 crossref_primary_10_3390_ma15051900 crossref_primary_10_1002_pc_25545 crossref_primary_10_4028_www_scientific_net_KEM_900_26 crossref_primary_10_1007_s12010_023_04318_y crossref_primary_10_1016_j_matpr_2022_12_254 crossref_primary_10_1016_j_addr_2021_114007 crossref_primary_10_3390_cells10102687 crossref_primary_10_1016_j_smaim_2021_08_002 crossref_primary_10_1038_s41526_022_00236_1 crossref_primary_10_1016_j_bprint_2024_e00364 crossref_primary_10_1038_s41598_022_26908_2 crossref_primary_10_1016_j_mtbio_2024_101410 crossref_primary_10_1088_1748_605X_acb7bd crossref_primary_10_1051_e3sconf_202450501028 crossref_primary_10_1007_s12221_021_1243_z crossref_primary_10_1002_jbm_b_35536 crossref_primary_10_3390_ma13071500 crossref_primary_10_1002_btpr_3234 crossref_primary_10_1016_j_jmbbm_2024_106455 crossref_primary_10_3390_ijms22020903 crossref_primary_10_3390_biomedicines10051095 crossref_primary_10_1186_s40824_019_0180_z crossref_primary_10_1016_j_jmbbm_2021_104613 crossref_primary_10_1016_j_ijpharm_2020_120097 crossref_primary_10_3390_app11167336 crossref_primary_10_3390_polym15020275 crossref_primary_10_1002_slct_202200697 crossref_primary_10_1016_j_heliyon_2023_e18599 crossref_primary_10_1159_000503280 crossref_primary_10_36306_konjes_1198527 crossref_primary_10_1016_j_mtla_2021_101100 crossref_primary_10_1016_j_jsamd_2020_01_001 crossref_primary_10_1016_j_pmatsci_2020_100721 crossref_primary_10_1016_j_jcyt_2022_08_008 crossref_primary_10_3390_jfb14100496 crossref_primary_10_3390_mi13040528 crossref_primary_10_1080_09205063_2024_2444077 crossref_primary_10_1016_j_jsamd_2020_01_007 crossref_primary_10_1016_j_ijbiomac_2025_141114 crossref_primary_10_1016_j_colsurfb_2020_111347 crossref_primary_10_1080_09205063_2023_2170675 crossref_primary_10_3390_polym13213825 crossref_primary_10_1016_j_matpr_2023_02_278 crossref_primary_10_1002_anbr_202100116 crossref_primary_10_3390_ijms221910233 crossref_primary_10_1088_1748_605X_ad02d3 crossref_primary_10_1177_08927057231214468 crossref_primary_10_1002_app_52846 crossref_primary_10_1021_acsami_1c23017 crossref_primary_10_53365_nrfhh_175205 crossref_primary_10_1111_ijac_15084 crossref_primary_10_1016_j_jddst_2020_101978 crossref_primary_10_1016_j_bioactmat_2022_05_018 crossref_primary_10_1016_j_msec_2020_111245 crossref_primary_10_1089_ten_tec_2020_0050 crossref_primary_10_1002_jbm_a_37833 crossref_primary_10_1039_D3CP02944A crossref_primary_10_3390_ma17030654 crossref_primary_10_1177_09544119211022988 crossref_primary_10_3390_ijms242417410 crossref_primary_10_3390_md18020123 crossref_primary_10_1007_s12034_021_02511_5 crossref_primary_10_1016_j_scitotenv_2021_149809 crossref_primary_10_3390_polym14214566 crossref_primary_10_1016_j_indcrop_2022_115979 crossref_primary_10_1016_j_bioadv_2023_213528 crossref_primary_10_1016_j_tice_2024_102390 crossref_primary_10_3390_nano10081511 crossref_primary_10_18178_ijesd_2022_13_3_1373 crossref_primary_10_1080_15476278_2021_1991743 crossref_primary_10_3389_fbioe_2020_553529 crossref_primary_10_1002_jbm_b_35060 crossref_primary_10_1111_jace_20389 crossref_primary_10_3390_ijms22063086 crossref_primary_10_1016_j_smaim_2023_04_004 crossref_primary_10_1016_j_jmbbm_2022_105275 crossref_primary_10_1007_s10904_022_02454_2 crossref_primary_10_1002_app_48522 crossref_primary_10_1002_app_50337 crossref_primary_10_1039_D4BM01099J crossref_primary_10_1021_acs_cgd_4c01002 crossref_primary_10_1371_journal_pone_0272283 crossref_primary_10_1016_j_matdes_2024_113277 crossref_primary_10_1016_j_ijbiomac_2024_135709 crossref_primary_10_3390_life13112141 crossref_primary_10_1016_j_ijbiomac_2024_134615 crossref_primary_10_1016_j_carbpol_2021_118807 crossref_primary_10_1016_j_apsusc_2023_157051 crossref_primary_10_2217_nnm_2020_0112 crossref_primary_10_3390_jfb15060151 crossref_primary_10_3390_ma15196952 crossref_primary_10_1007_s40846_022_00751_2 crossref_primary_10_1016_j_matpr_2021_12_580 crossref_primary_10_1016_j_petrol_2022_110941 crossref_primary_10_1177_0885328221989984 crossref_primary_10_1016_j_jcms_2020_03_001 crossref_primary_10_1016_j_jnoncrysol_2023_122289 crossref_primary_10_1208_s12249_022_02419_1 crossref_primary_10_1177_24726303211020297 crossref_primary_10_1016_j_coco_2021_100747 crossref_primary_10_3390_biom9120840 crossref_primary_10_3390_mi12030287 crossref_primary_10_3390_ma15020463 crossref_primary_10_3390_ma13225303 crossref_primary_10_3390_pharmaceutics14061169 crossref_primary_10_1021_acsbiomaterials_3c01770 crossref_primary_10_15251_JOBM_2022_144_169 crossref_primary_10_3390_bioengineering7020052 crossref_primary_10_1016_j_jmrt_2020_08_042 crossref_primary_10_3390_nano9070952 crossref_primary_10_1016_j_matchemphys_2024_129821 crossref_primary_10_3390_ma13173735 crossref_primary_10_1097_MAT_0000000000001356 crossref_primary_10_1016_j_matdes_2020_109026 crossref_primary_10_3390_s21227477 crossref_primary_10_3390_pharmaceutics14020306 crossref_primary_10_1016_j_reactfunctpolym_2019_104414 crossref_primary_10_1016_j_saa_2021_119439 crossref_primary_10_1002_mabi_202100383 crossref_primary_10_3390_biology13040237 crossref_primary_10_3390_pharmaceutics14020305 crossref_primary_10_1142_S179304802331001X crossref_primary_10_1021_acsbiomaterials_3c01956 crossref_primary_10_1007_s42995_024_00241_1 crossref_primary_10_3390_pharmaceutics14020274 crossref_primary_10_22494_cot_v9i2_128 crossref_primary_10_3390_pharmaceutics15031017 crossref_primary_10_3389_fcell_2021_661802 crossref_primary_10_1016_j_oceram_2022_100219 crossref_primary_10_3389_fbioe_2021_630488 crossref_primary_10_1016_j_jmbbm_2020_103854 crossref_primary_10_1007_s42247_024_00702_4 crossref_primary_10_3390_polym14132561 crossref_primary_10_3390_biology9120476 crossref_primary_10_1021_acsomega_1c05593 crossref_primary_10_1002_anbr_202100073 crossref_primary_10_1049_nbt2_12118 crossref_primary_10_1080_09205063_2023_2181066 crossref_primary_10_1039_D0TB02288H crossref_primary_10_15302_J_QB_021_0253 crossref_primary_10_1016_j_eurpolymj_2019_05_010 crossref_primary_10_1016_j_micromeso_2020_110687 crossref_primary_10_3390_polym13111786 crossref_primary_10_1002_pat_5366 crossref_primary_10_3390_ijms22179335 crossref_primary_10_1016_j_heliyon_2023_e16228 crossref_primary_10_3390_polym15122601 crossref_primary_10_3390_biology12091219 crossref_primary_10_1155_2022_1953861 crossref_primary_10_20473_j_djmkg_v56_i1_p53_57 crossref_primary_10_3390_ma15186245 crossref_primary_10_1088_2631_7990_ad996d crossref_primary_10_1016_j_mser_2025_100931 crossref_primary_10_1016_j_bprint_2022_e00244 crossref_primary_10_2174_1381612829666230320103412 crossref_primary_10_3389_fbioe_2022_987195 crossref_primary_10_1016_j_jmbbm_2022_105138 crossref_primary_10_1002_advs_202001334 crossref_primary_10_3390_biomimetics9070409 crossref_primary_10_1016_j_mattod_2025_03_009 crossref_primary_10_1016_j_eurpolymj_2024_113093 crossref_primary_10_1016_j_heliyon_2023_e18613 crossref_primary_10_1680_jemmr_23_00048 crossref_primary_10_3390_polym15193957 crossref_primary_10_2174_1574888X16666211006105915 crossref_primary_10_3390_ma13225083 crossref_primary_10_1016_j_mtbio_2023_100858 crossref_primary_10_1016_j_tice_2024_102551 crossref_primary_10_3390_fermentation10020100 crossref_primary_10_1016_j_compositesb_2019_107146 crossref_primary_10_47836_pjst_30_4_28 crossref_primary_10_1002_jbm_b_34927 crossref_primary_10_1186_s40824_020_00196_1 crossref_primary_10_1016_j_rsurfi_2024_100271 crossref_primary_10_1021_acsbiomaterials_0c00550 crossref_primary_10_3390_ijms23126574 crossref_primary_10_1007_s12038_020_00122_6 crossref_primary_10_3390_ma15072572 crossref_primary_10_1016_j_ijbiomac_2024_131874 crossref_primary_10_1080_17435889_2024_2375958 crossref_primary_10_1016_j_mtchem_2024_102258 crossref_primary_10_3390_polym15030534 crossref_primary_10_1007_s10856_021_06588_6 crossref_primary_10_3390_nano14231977 crossref_primary_10_1088_1748_605X_ad38ac crossref_primary_10_1016_j_matdes_2021_109865 crossref_primary_10_1038_s41598_023_50664_6 crossref_primary_10_1016_j_ijbiomac_2025_139652 crossref_primary_10_1016_j_jmrt_2021_08_083 crossref_primary_10_2147_IJN_S389471 crossref_primary_10_1016_j_msec_2020_111168 crossref_primary_10_1155_2022_7900382 crossref_primary_10_1016_j_jsamd_2021_06_006 crossref_primary_10_1016_j_ijbiomac_2024_130643 crossref_primary_10_1002_mabi_202300066 crossref_primary_10_3390_pharmaceutics14020374 crossref_primary_10_1002_macp_202200282 crossref_primary_10_3390_nano12193420 crossref_primary_10_1021_acsbiomaterials_1c00620 crossref_primary_10_1002_jbm_a_37170 crossref_primary_10_1007_s10266_024_00945_x crossref_primary_10_1016_j_mtcomm_2023_107509 crossref_primary_10_1155_2020_7593402 crossref_primary_10_1016_j_pmatsci_2023_101167 crossref_primary_10_1002_app_49797 crossref_primary_10_3390_ijms22020485 crossref_primary_10_3389_fcell_2020_614545 crossref_primary_10_1002_jcp_28876 crossref_primary_10_1186_s12938_023_01096_w crossref_primary_10_1007_s10924_024_03264_y crossref_primary_10_1590_s1517_707620210004_1386 crossref_primary_10_3390_ma17215305 crossref_primary_10_1002_pat_6046 crossref_primary_10_1016_j_bprint_2020_e00093 crossref_primary_10_1021_acsbiomaterials_8b01456 crossref_primary_10_3390_ma14092096 crossref_primary_10_1016_j_bioadv_2023_213578 crossref_primary_10_1016_j_mtcomm_2023_106643 crossref_primary_10_1002_app_48455 crossref_primary_10_3390_polym15061342 crossref_primary_10_1016_j_carbpol_2019_115658 |
Cites_doi | 10.3390/ma11081478 10.1016/j.bej.2018.01.006 10.1016/j.msec.2017.05.096 10.1182/blood-2004-04-1559 10.1016/j.jiec.2016.09.021 10.1097/00002480-200209000-00003 10.1016/j.foodhyd.2005.02.019 10.1016/j.ijbiomac.2016.01.112 10.3390/ma10010029 10.1088/0957-4484/18/5/055101 10.1159/000457792 10.1002/jbm.b.30962 10.1002/jbm.a.31435 10.1089/end.1997.11.383 10.1016/j.carbpol.2012.10.028 10.1016/j.msec.2013.05.039 10.22203/eCM.v005a01 10.1016/j.memsci.2016.04.069 10.1016/j.cden.2017.06.009 10.1016/j.biomaterials.2008.12.080 10.1631/jzus.B1600118 10.1016/j.biomaterials.2012.03.076 10.1016/j.tibtech.2003.12.001 10.1016/j.biomaterials.2005.03.016 10.1155/2011/290602 10.1016/j.jconrel.2017.05.028 10.1016/j.jpor.2012.10.001 10.1007/s10856-006-0435-9 10.1155/2015/920893 10.1007/s10853-017-1807-x 10.1126/science.8493529 10.1016/S1350-4533(98)00007-1 10.1039/C7BM00315C 10.1016/j.biocel.2015.05.008 10.1146/annurev-chembioeng-061010-114257 10.3390/ma11081430 10.1016/j.memsci.2013.07.008 10.1002/jbm.b.31588 10.2225/vol3-issue2-fulltext-5 10.2174/1574888X11666160429122238 10.1016/j.biomaterials.2004.11.057 10.1088/1748-6041/3/2/022001 10.1007/s40610-015-0013-3 10.1016/j.ijbiomac.2015.09.077 10.1016/S1369-7021(11)70058-X 10.1016/j.biomaterials.2005.11.025 10.1016/j.msec.2017.04.088 10.1016/j.bone.2010.09.138 10.1016/j.nano.2016.09.008 10.4161/org.23306 10.1016/j.actbio.2009.08.041 10.15302/J-ENG-2015061 10.1016/j.biotechadv.2016.12.006 10.1016/j.actbio.2013.10.003 10.1016/j.msec.2015.07.053 10.1557/jmr.2018.159 10.1042/BSR20150025 10.1089/ten.tea.2012.0773 10.1016/j.progpolymsci.2011.06.003 10.1016/j.apsusc.2012.04.094 10.1002/jbm.b.32843 10.1016/j.jdent.2014.05.008 10.1109/IECBES.2016.7843524 10.1016/j.mattod.2013.11.017 10.1016/j.carbpol.2013.12.026 10.1016/j.biomaterials.2012.01.007 10.15283/ijsc.2010.3.2.85 10.1016/S0140-6736(99)90247-7 10.1016/j.biomaterials.2006.01.039 10.1016/j.actbio.2010.11.043 10.1016/S0142-9612(03)00030-9 10.2741/e286 10.1016/j.biomaterials.2016.01.024 10.1016/j.copbio.2016.03.014 10.2147/IJN.S163399 10.1016/j.biomaterials.2006.01.017 10.1016/j.actbio.2018.03.049 10.1016/j.biomaterials.2006.10.003 10.1161/01.RES.0000265074.83288.09 10.1016/j.actbio.2016.12.001 10.3390/ijms17121974 10.1023/B:ABME.0000017544.36001.8e 10.1116/1.4958793 10.1016/j.carbpol.2012.02.050 10.1016/j.biomaterials.2016.07.038 10.1002/jbm.a.31967 10.1002/(SICI)1097-4636(19990315)44:4<446::AID-JBM11>3.0.CO;2-F 10.1126/science.1067404 10.3390/ph10040096 10.1007/s40204-018-0100-7 10.1016/j.biotechadv.2015.12.011 10.1007/s005860100282 10.1016/j.carbpol.2016.05.049 10.3390/dj6040072 10.1016/j.carbpol.2018.01.060 10.1002/jbm.10150 10.1038/s41598-017-02962-z 10.1016/j.msec.2009.07.018 10.11138/ccmbm/2017.14.1.217 10.1016/S0142-9612(00)00280-5 10.1021/jp106488t 10.1016/j.ijbiomac.2010.03.015 10.1016/j.dental.2015.01.006 10.1016/j.drudis.2016.04.006 10.2147/IJN.S79986 10.1016/j.bej.2016.01.018 10.1016/S1369-7021(08)70086-5 10.5301/ijao.5000307 10.1016/j.biomaterials.2016.01.012 10.1016/j.jconrel.2011.09.064 10.1039/C7BM00765E 10.1016/j.actbio.2014.11.004 10.1007/s12015-018-9826-9 10.1007/s11095-010-0359-4 10.1016/j.biomaterials.2017.01.042 10.1016/j.compscitech.2010.05.011 10.5435/00124635-200501000-00010 10.1016/j.polymer.2008.09.014 10.1016/j.addr.2012.09.010 10.1016/j.msec.2015.10.014 10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R 10.1089/ten.tea.2007.0255 10.1021/bm101446k 10.1016/j.ymeth.2008.03.006 10.1016/j.ijbiomac.2016.12.046 10.1016/j.biomaterials.2011.09.009 10.1016/j.actbio.2008.09.020 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma12040568 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC6416573 30769821 10_3390_ma12040568 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Ministerstvo Školství, Mládeže a Tělovýchovy grantid: National Sustainability Program I (NPU I) Nr. LO1503 |
GroupedDBID | 29M 2WC 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS GROUPED_DOAJ NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c472t-6d71affdd92aa0f0f9a943a848367a7610b735a4734698e0664ffde7076ca5bb3 |
IEDL.DBID | 8FG |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 14:14:02 EDT 2025 Fri Jul 11 10:29:39 EDT 2025 Fri Jul 25 11:52:27 EDT 2025 Wed Feb 19 02:32:13 EST 2025 Tue Jul 01 03:55:58 EDT 2025 Thu Apr 24 22:54:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | stem cells hydrogels scaffolds bone tissue engineering regenerative medicine |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-6d71affdd92aa0f0f9a943a848367a7610b735a4734698e0664ffde7076ca5bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9296-9414 0000-0001-9519-2292 0000-0001-7926-994X |
OpenAccessLink | https://www.proquest.com/docview/2333492127?pq-origsite=%requestingapplication% |
PMID | 30769821 |
PQID | 2333492127 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6416573 proquest_miscellaneous_2201716322 proquest_journals_2333492127 pubmed_primary_30769821 crossref_primary_10_3390_ma12040568 crossref_citationtrail_10_3390_ma12040568 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-14 |
PublicationDateYYYYMMDD | 2019-02-14 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kokubo (ref_36) 2006; 27 Balagangadharan (ref_55) 2017; 104 Yeatts (ref_120) 2011; 48 Babuska (ref_39) 2016; 11 Bakhtiar (ref_13) 2018; 7 Hoffman (ref_31) 2012; 64 Zhang (ref_71) 1999; 44 Yu (ref_72) 2010; 93 Bunnell (ref_125) 2008; 45 Chen (ref_27) 2006; 27 ref_131 ref_11 ref_130 Zhu (ref_107) 2017; 124 Turnbull (ref_42) 2018; 3 Agarwal (ref_97) 2008; 49 Pilipchuk (ref_16) 2015; 31 Skubis (ref_124) 2016; 12 Jeon (ref_94) 2013; 101B Alford (ref_21) 2015; 65 Stevens (ref_91) 2008; 85B Ullah (ref_29) 2015; 57 Wang (ref_22) 2017; 2 Collins (ref_61) 2013; 92 (ref_64) 2014; 10 (ref_3) 2011; 14 Asti (ref_47) 2014; 37 Dlaska (ref_4) 2015; 1 Gotman (ref_38) 1997; 11 Rezwan (ref_34) 2006; 27 Zhang (ref_68) 2012; 88 Vijayavenkataraman (ref_109) 2018; 33 Ryszkowska (ref_78) 2010; 70 Williams (ref_76) 2005; 26 Hench (ref_44) 2015; 13 Wen (ref_102) 2017; 5 Leong (ref_89) 2003; 24 Goldstein (ref_119) 2001; 22 Bose (ref_20) 2013; 16 Swetha (ref_57) 2010; 47 Gwon (ref_59) 2017; 49 Cengiz (ref_115) 2018; 132 Liu (ref_81) 2004; 32 Martin (ref_113) 2004; 22 Hospodiuk (ref_101) 2017; 35 Kaneko (ref_14) 2018; 14 Ge (ref_26) 2008; 3 Kattimani (ref_9) 2016; 7 Mygind (ref_117) 2007; 28 Egger (ref_112) 2017; 203 Fu (ref_96) 2010; 114 Roberts (ref_23) 2012; 8 Wang (ref_93) 2009; 29 Gentile (ref_49) 2016; 59 Shaunak (ref_103) 2017; 12 Lee (ref_62) 2012; 37 Ji (ref_84) 2011; 7 Chrzanowski (ref_129) 2014; 42 Albrektsson (ref_25) 2001; 10 Mandrycky (ref_105) 2016; 34 Varaprasad (ref_28) 2017; 79 Jiang (ref_80) 2018; 72 Gunatillake (ref_33) 2003; 5 Alizadeh (ref_95) 2013; 33 Zhao (ref_114) 2016; 109 Babuska (ref_41) 2015; 2015 Dash (ref_74) 2012; 158 Stratton (ref_6) 2016; 1 Hench (ref_32) 2002; 295 Gao (ref_123) 2014; 20 Watanabe (ref_70) 2007; 83A Shi (ref_92) 2011; 28 Wang (ref_18) 2016; 83 Park (ref_53) 2017; 46 Liu (ref_43) 2017; 78 Jell (ref_45) 2006; 17 ref_58 Yu (ref_7) 2018; 53 Jung (ref_87) 2016; 514 Ciuffi (ref_121) 2017; 14 Wu (ref_51) 2010; 6 Khanarian (ref_69) 2012; 33 Saravanan (ref_52) 2016; 93 Zhu (ref_104) 2016; 40 Langer (ref_5) 1993; 260 Venugopal (ref_98) 2007; 18 Berthiaume (ref_1) 2011; 2 Sittinger (ref_56) 2005; 26 Ozbolat (ref_133) 2016; 21 Huang (ref_12) 2011; 3 Sasikumar (ref_37) 2015; 10 An (ref_99) 2015; 1 Inci (ref_100) 2018; 6 Grossen (ref_73) 2017; 260 Aggarwal (ref_126) 2005; 105 Tan (ref_30) 2009; 30 LogithKumar (ref_54) 2016; 151 Jahangirian (ref_134) 2018; 13 Hu (ref_46) 2016; 82 Gimble (ref_122) 2007; 100 Gabriel (ref_77) 2017; 13 Dhandayuthapani (ref_8) 2011; 2011 Pawar (ref_63) 2012; 33 Grayson (ref_111) 2008; 14 Suh (ref_83) 2002; 48 Holzwarth (ref_132) 2011; 32 Reena (ref_17) 2015; 10 ref_116 Bottino (ref_15) 2017; 61 ref_35 Liang (ref_86) 2013; 446 Vacanti (ref_79) 1999; 354 Mikos (ref_82) 2000; 3 Wu (ref_75) 2012; 258 Khan (ref_24) 2005; 13 Yuan (ref_88) 2017; 18 (ref_66) 2014; 103 Lien (ref_50) 2009; 5 Sikavitsas (ref_118) 2002; 62 Rho (ref_19) 1998; 20 ref_108 Lee (ref_90) 2010; 3 Zarrintaj (ref_65) 2018; 187 ref_40 Ullah (ref_127) 2015; 35 Stevens (ref_10) 2008; 11 ref_2 Nam (ref_85) 2000; 53 Barrangou (ref_67) 2006; 20 ref_48 Egusa (ref_128) 2012; 56 Jia (ref_106) 2016; 106 Tang (ref_110) 2016; 83 Nimmo (ref_60) 2011; 12 |
References_xml | – ident: ref_11 doi: 10.3390/ma11081478 – volume: 132 start-page: 100 year: 2018 ident: ref_115 article-title: A systematic study for optimal cell seeding and culture conditions in a perfusion mode bone-tissue bioreactor publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2018.01.006 – volume: 79 start-page: 958 year: 2017 ident: ref_28 article-title: A mini review on hydrogels classification and recent developments in miscellaneous applications publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.05.096 – volume: 105 start-page: 1815 year: 2005 ident: ref_126 article-title: Human mesenchymal stem cells modulate allogeneic immune cell responses publication-title: Blood doi: 10.1182/blood-2004-04-1559 – volume: 46 start-page: 182 year: 2017 ident: ref_53 article-title: A unique scaffold for bone tissue engineering: An osteogenic combination of graphene oxide–hyaluronic acid–chitosan with simvastatin publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.09.021 – volume: 48 start-page: 460 year: 2002 ident: ref_83 article-title: Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique publication-title: ASAIO J. doi: 10.1097/00002480-200209000-00003 – volume: 20 start-page: 184 year: 2006 ident: ref_67 article-title: Textural properties of agarose gels. I. Rheological and fracture properties publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2005.02.019 – volume: 93 start-page: 1354 year: 2016 ident: ref_52 article-title: Chitosan based biocomposite scaffolds for bone tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.01.112 – ident: ref_108 doi: 10.3390/ma10010029 – volume: 18 start-page: 055101 year: 2007 ident: ref_98 article-title: Biocomposite nanofibres and osteoblasts for bone tissue engineering publication-title: Nanotechnology doi: 10.1088/0957-4484/18/5/055101 – volume: 203 start-page: 316 year: 2017 ident: ref_112 article-title: Application of a parallelizable perfusion bioreactor for physiologic 3D cell culture publication-title: Cells Tissues Organs doi: 10.1159/000457792 – volume: 85B start-page: 573 year: 2008 ident: ref_91 article-title: A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.30962 – volume: 83A start-page: 845 year: 2007 ident: ref_70 article-title: Quick-forming hydroxyapatite/agarose gel composites induce bone regeneration publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.31435 – volume: 11 start-page: 383 year: 1997 ident: ref_38 article-title: Characteristics of Metals Used in Implants publication-title: J. Endourol. doi: 10.1089/end.1997.11.383 – volume: 92 start-page: 1262 year: 2013 ident: ref_61 article-title: Hyaluronic acid based scaffolds for tissue engineering—A review publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.10.028 – volume: 33 start-page: 3958 year: 2013 ident: ref_95 article-title: Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2013.05.039 – volume: 5 start-page: 1 year: 2003 ident: ref_33 article-title: Biodegradable synthetic polymers for tissue engineering publication-title: Eur. Cells Mater. doi: 10.22203/eCM.v005a01 – volume: 514 start-page: 250 year: 2016 ident: ref_87 article-title: Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS) publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.04.069 – volume: 61 start-page: 689 year: 2017 ident: ref_15 article-title: Advanced scaffolds for dental pulp and periodontal regeneration publication-title: Dent. Clin. North Am. doi: 10.1016/j.cden.2017.06.009 – volume: 30 start-page: 2499 year: 2009 ident: ref_30 article-title: Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.12.080 – volume: 18 start-page: 303 year: 2017 ident: ref_88 article-title: Rapid prototyping technology and its application in bone tissue engineering publication-title: J. Zhejiang Univ.-Sci. B doi: 10.1631/jzus.B1600118 – volume: 33 start-page: 5247 year: 2012 ident: ref_69 article-title: A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.03.076 – volume: 22 start-page: 80 year: 2004 ident: ref_113 article-title: The role of bioreactors in tissue engineering publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2003.12.001 – volume: 26 start-page: 5983 year: 2005 ident: ref_56 article-title: Chitosan: A versatile biopolymer for orthopaedic tissue-engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.03.016 – volume: 2011 start-page: 1 year: 2011 ident: ref_8 article-title: polymeric scaffolds in tissue engineering application: A review publication-title: Int. J. Polym. Sci. doi: 10.1155/2011/290602 – volume: 260 start-page: 46 year: 2017 ident: ref_73 article-title: PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.05.028 – volume: 56 start-page: 229 year: 2012 ident: ref_128 article-title: Stem cells in dentistry—Part II: Clinical applications publication-title: J. Prosthodont. Res. doi: 10.1016/j.jpor.2012.10.001 – volume: 17 start-page: 997 year: 2006 ident: ref_45 article-title: Gene activation by bioactive glasses publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-006-0435-9 – volume: 2015 start-page: 1 year: 2015 ident: ref_41 article-title: Comparison of fibroblast and osteoblast response to cultivation on titanium implants with different grain sizes publication-title: J. Nanomater. doi: 10.1155/2015/920893 – volume: 53 start-page: 4734 year: 2018 ident: ref_7 article-title: A three-dimensional porous hydroxyapatite nanocomposite scaffold with shape memory effect for bone tissue engineering publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1807-x – volume: 260 start-page: 920 year: 1993 ident: ref_5 article-title: Tissue engineering publication-title: Science doi: 10.1126/science.8493529 – volume: 20 start-page: 92 year: 1998 ident: ref_19 article-title: Mechanical properties and the hierarchical structure of bone publication-title: Med. Eng. Phys. doi: 10.1016/S1350-4533(98)00007-1 – volume: 5 start-page: 1690 year: 2017 ident: ref_102 article-title: 3D printed porous ceramic scaffolds for bone tissue engineering: A review publication-title: Biomater. Sci. doi: 10.1039/C7BM00315C – volume: 65 start-page: 20 year: 2015 ident: ref_21 article-title: Extracellular matrix networks in bone remodeling publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2015.05.008 – volume: 2 start-page: 403 year: 2011 ident: ref_1 article-title: Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges publication-title: Annu. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-061010-114257 – ident: ref_130 doi: 10.3390/ma11081430 – volume: 446 start-page: 482 year: 2013 ident: ref_86 article-title: Polar polymer membranes via thermally induced phase separation using a universal crystallizable diluent publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.07.008 – volume: 93 start-page: 285 year: 2010 ident: ref_72 article-title: Biodegradable poly(α-hydroxy acid) polymer scaffolds for bone tissue engineering publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.31588 – volume: 3 start-page: 23 year: 2000 ident: ref_82 article-title: Formation of highly porous biodegradable scaffolds for tissue engineering publication-title: Electron. J. Biotechnol. doi: 10.2225/vol3-issue2-fulltext-5 – volume: 12 start-page: 225 year: 2017 ident: ref_103 article-title: The role of 3D modelling and printing in orthopaedic tissue engineering: A review of the current literature publication-title: Curr. Stem Cell Res. Ther. doi: 10.2174/1574888X11666160429122238 – volume: 26 start-page: 4817 year: 2005 ident: ref_76 article-title: Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.11.057 – volume: 3 start-page: 022001 year: 2008 ident: ref_26 article-title: Manufacture of degradable polymeric scaffolds for bone regeneration publication-title: Biomed. Mater. doi: 10.1088/1748-6041/3/2/022001 – volume: 1 start-page: 61 year: 2015 ident: ref_4 article-title: Clinical translation in tissue engineering—The surgeon’s view publication-title: Curr. Mol. Biol. Rep. doi: 10.1007/s40610-015-0013-3 – volume: 82 start-page: 134 year: 2016 ident: ref_46 article-title: A detailed study of homogeneous agarose/hydroxyapatite nanocomposites for load-bearing bone tissue publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.09.077 – volume: 14 start-page: 88 year: 2011 ident: ref_3 article-title: Biomaterials & scaffolds for tissue engineering publication-title: Mater. Today doi: 10.1016/S1369-7021(11)70058-X – volume: 27 start-page: 2414 year: 2006 ident: ref_27 article-title: 45S5 Bioglass®-derived glass–Ceramic scaffolds for bone tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.11.025 – volume: 78 start-page: 503 year: 2017 ident: ref_43 article-title: Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.04.088 – volume: 48 start-page: 171 year: 2011 ident: ref_120 article-title: Bone tissue engineering bioreactors: Dynamic culture and the influence of shear stress publication-title: Bone doi: 10.1016/j.bone.2010.09.138 – volume: 13 start-page: 201 year: 2017 ident: ref_77 article-title: Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2016.09.008 – volume: 2 start-page: 224 year: 2017 ident: ref_22 article-title: Bone grafts and biomaterials substitutes for bone defect repair: A review publication-title: Bioact. Mater. – volume: 8 start-page: 114 year: 2012 ident: ref_23 article-title: Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing publication-title: Organogenesis doi: 10.4161/org.23306 – volume: 6 start-page: 1167 year: 2010 ident: ref_51 article-title: Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.08.041 – volume: 1 start-page: 261 year: 2015 ident: ref_99 article-title: Design and 3D printing of scaffolds and tissues publication-title: Engineering doi: 10.15302/J-ENG-2015061 – volume: 35 start-page: 217 year: 2017 ident: ref_101 article-title: The bioink: A comprehensive review on bioprintable materials publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2016.12.006 – volume: 10 start-page: 798 year: 2014 ident: ref_64 article-title: Oxidized dextrins as alternative crosslinking agents for polysaccharides: Application to hydrogels of agarose–chitosan publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.10.003 – volume: 57 start-page: 414 year: 2015 ident: ref_29 article-title: Classification, processing and application of hydrogels: A review publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.07.053 – volume: 33 start-page: 1999 year: 2018 ident: ref_109 article-title: Electrohydrodynamic-jetting (EHD-jet) 3D-printed functionally graded scaffolds for tissue engineering applications publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.159 – volume: 35 start-page: 1 year: 2015 ident: ref_127 article-title: Human mesenchymal stem cells - current trends and future prospective publication-title: Biosci. Rep. doi: 10.1042/BSR20150025 – volume: 20 start-page: 1271 year: 2014 ident: ref_123 article-title: Differentiation of human adipose-derived stem cells into neuron-like cells which are compatible with photocurable three-dimensional scaffolds publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2012.0773 – volume: 37 start-page: 106 year: 2012 ident: ref_62 article-title: Alginate: Properties and biomedical applications publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2011.06.003 – volume: 7 start-page: 9 year: 2016 ident: ref_9 article-title: Hydroxyapatite–-Past, present, and future in bone regeneration publication-title: Bone Tissue Regen. Insights – volume: 258 start-page: 7589 year: 2012 ident: ref_75 article-title: Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.04.094 – volume: 101B start-page: 330 year: 2013 ident: ref_94 article-title: Tailoring of processing parameters for sintering microsphere-based scaffolds with dense-phase carbon dioxide publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.32843 – volume: 42 start-page: 915 year: 2014 ident: ref_129 article-title: Tissue engineering in dentistry publication-title: Dentistry J. doi: 10.1016/j.jdent.2014.05.008 – ident: ref_48 doi: 10.1109/IECBES.2016.7843524 – volume: 16 start-page: 496 year: 2013 ident: ref_20 article-title: Bone tissue engineering using 3D printing publication-title: Mater. Today doi: 10.1016/j.mattod.2013.11.017 – volume: 103 start-page: 359 year: 2014 ident: ref_66 article-title: Agarose drug delivery systems upgraded by surfactants inclusion: Critical role of the pore architecture publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.12.026 – volume: 33 start-page: 3279 year: 2012 ident: ref_63 article-title: Alginate derivatization: A review of chemistry, properties and applications publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.01.007 – volume: 1 start-page: 93 year: 2016 ident: ref_6 article-title: Bioactive polymeric scaffolds for tissue engineering publication-title: Bioact. Mater. – volume: 3 start-page: 85 year: 2010 ident: ref_90 article-title: Solid free-form fabrication technology and its application to bone tissue engineering publication-title: Int. J. Stem Cells doi: 10.15283/ijsc.2010.3.2.85 – volume: 354 start-page: S32 year: 1999 ident: ref_79 article-title: Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation publication-title: Lancet doi: 10.1016/S0140-6736(99)90247-7 – volume: 27 start-page: 3413 year: 2006 ident: ref_34 article-title: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.039 – volume: 7 start-page: 1653 year: 2011 ident: ref_84 article-title: Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.11.043 – volume: 24 start-page: 2363 year: 2003 ident: ref_89 article-title: Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00030-9 – volume: 3 start-page: 278 year: 2018 ident: ref_42 article-title: 3D bioactive composite scaffolds for bone tissue engineering publication-title: Bioact. Mater. – volume: 3 start-page: 788 year: 2011 ident: ref_12 article-title: Dental pulp and dentin tissue engineering and regeneration–advancement and challenge publication-title: Front. Biosci. doi: 10.2741/e286 – volume: 83 start-page: 363 year: 2016 ident: ref_110 article-title: Biofabrication of bone tissue: Approaches, challenges and translation for bone regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.024 – volume: 40 start-page: 103 year: 2016 ident: ref_104 article-title: 3D printing of functional biomaterials for tissue engineering publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.03.014 – volume: 13 start-page: 5953 year: 2018 ident: ref_134 article-title: A review of using green chemistry methods for biomaterials in tissue engineering publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S163399 – volume: 27 start-page: 2907 year: 2006 ident: ref_36 article-title: How useful is SBF in predicting in vivo bone bioactivity? publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.017 – volume: 72 start-page: 407 year: 2018 ident: ref_80 article-title: In vitro evaluation of MgSr and MgCaSr alloys via direct culture with bone marrow derived mesenchymal stem cells publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.03.049 – volume: 28 start-page: 1036 year: 2007 ident: ref_117 article-title: Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.10.003 – volume: 100 start-page: 1249 year: 2007 ident: ref_122 article-title: Adipose-derived stem cells for regenerative medicine publication-title: Circ. Res. doi: 10.1161/01.RES.0000265074.83288.09 – volume: 49 start-page: 284 year: 2017 ident: ref_59 article-title: Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.12.001 – ident: ref_2 doi: 10.3390/ijms17121974 – volume: 10 start-page: 283 year: 2015 ident: ref_17 article-title: Current concepts of bone regeneration in implant dentistry publication-title: J. Surg. – volume: 32 start-page: 477 year: 2004 ident: ref_81 article-title: Polymeric scaffolds for bone tissue engineering publication-title: Ann. Biomed. Eng. doi: 10.1023/B:ABME.0000017544.36001.8e – volume: 11 start-page: 030801 year: 2016 ident: ref_39 article-title: Evaluating the osseointegration of nanostructured titanium implants in animal models: Current experimental methods and perspectives (Review) publication-title: Biointerphases doi: 10.1116/1.4958793 – volume: 88 start-page: 1445 year: 2012 ident: ref_68 article-title: Synthesis and characterization of a degradable composite agarose/HA hydrogel publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.02.050 – volume: 106 start-page: 58 year: 2016 ident: ref_106 article-title: Direct 3D bioprinting of perfusable vascular constructs using a blend bioink publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.07.038 – ident: ref_116 doi: 10.1002/jbm.a.31967 – volume: 44 start-page: 446 year: 1999 ident: ref_71 article-title: Poly (α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology publication-title: J. Biomed. Mater. doi: 10.1002/(SICI)1097-4636(19990315)44:4<446::AID-JBM11>3.0.CO;2-F – volume: 295 start-page: 1014 year: 2002 ident: ref_32 article-title: Third-generation biomedical materials publication-title: Science doi: 10.1126/science.1067404 – ident: ref_35 doi: 10.3390/ph10040096 – volume: 7 start-page: 249 year: 2018 ident: ref_13 article-title: The role of stem cell therapy in regeneration of dentine-pulp complex: A systematic review publication-title: Prog. Biomater. doi: 10.1007/s40204-018-0100-7 – volume: 34 start-page: 422 year: 2016 ident: ref_105 article-title: 3D bioprinting for engineering complex tissues publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2015.12.011 – volume: 10 start-page: S96 year: 2001 ident: ref_25 article-title: Osteoinduction, osteoconduction and osseointegration publication-title: Eur. Spine J. doi: 10.1007/s005860100282 – volume: 151 start-page: 172 year: 2016 ident: ref_54 article-title: A review of chitosan and its derivatives in bone tissue engineering publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.05.049 – ident: ref_131 doi: 10.3390/dj6040072 – volume: 187 start-page: 66 year: 2018 ident: ref_65 article-title: Agarose-based biomaterials for tissue engineering publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.01.060 – volume: 62 start-page: 136 year: 2002 ident: ref_118 article-title: Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.10150 – ident: ref_58 doi: 10.1038/s41598-017-02962-z – volume: 29 start-page: 2502 year: 2009 ident: ref_93 article-title: Porous poly (lactic-co-glycolide) microsphere sintered scaffolds for tissue repair applications publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2009.07.018 – volume: 14 start-page: 217 year: 2017 ident: ref_121 article-title: Adipose stem cells for bone tissue repair publication-title: Clin. Cases Miner. Bone Metab. doi: 10.11138/ccmbm/2017.14.1.217 – volume: 22 start-page: 1279 year: 2001 ident: ref_119 article-title: Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00280-5 – volume: 114 start-page: 18372 year: 2010 ident: ref_96 article-title: Preparation and characterization of nano-hydroxyapatite/poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) composite fibers for tissue engineering publication-title: J. Phys. Chem. C doi: 10.1021/jp106488t – volume: 47 start-page: 1 year: 2010 ident: ref_57 article-title: Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2010.03.015 – volume: 31 start-page: 317 year: 2015 ident: ref_16 article-title: Tissue engineering for bone regeneration and osseointegration in the oral cavity publication-title: Dent. Mater. doi: 10.1016/j.dental.2015.01.006 – ident: ref_40 – volume: 21 start-page: 1257 year: 2016 ident: ref_133 article-title: Application areas of 3D bioprinting publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2016.04.006 – volume: 10 start-page: 129 year: 2015 ident: ref_37 article-title: Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite–an in vitro study publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S79986 – volume: 109 start-page: 268 year: 2016 ident: ref_114 article-title: Bioreactors for tissue engineering: An update publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2016.01.018 – volume: 11 start-page: 18 year: 2008 ident: ref_10 article-title: Biomaterials for bone tissue engineering publication-title: Mater. Today doi: 10.1016/S1369-7021(08)70086-5 – volume: 37 start-page: 187 year: 2014 ident: ref_47 article-title: Natural and synthetic biodegradable polymers: Different scaffolds for cell expansion and tissue formation publication-title: Int. J. Artif. Organs doi: 10.5301/ijao.5000307 – volume: 12 start-page: 38 year: 2016 ident: ref_124 article-title: Adipose-derived stem cells: A review of osteogenesis differentiation publication-title: Folia Biol. Oecol. – volume: 83 start-page: 127 year: 2016 ident: ref_18 article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.012 – volume: 158 start-page: 15 year: 2012 ident: ref_74 article-title: Poly-epsilon-caprolactone based formulations for drug delivery and tissue engineering: A review publication-title: J. Control. Release doi: 10.1016/j.jconrel.2011.09.064 – volume: 6 start-page: 915 year: 2018 ident: ref_100 article-title: Bioinks for 3D bioprinting: An overview publication-title: Biomater. Sci. doi: 10.1039/C7BM00765E – volume: 13 start-page: 1 year: 2015 ident: ref_44 article-title: Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.11.004 – volume: 14 start-page: 668 year: 2018 ident: ref_14 article-title: Dental pulp tissue engineering using mesenchymal stem cells: A review with a protocol publication-title: Stem Cell Rev. Rep. doi: 10.1007/s12015-018-9826-9 – volume: 28 start-page: 1224 year: 2011 ident: ref_92 article-title: Sintered microsphere scaffolds for controlled release and tissue engineering publication-title: Pharm. Res. doi: 10.1007/s11095-010-0359-4 – volume: 124 start-page: 106 year: 2017 ident: ref_107 article-title: Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.01.042 – volume: 70 start-page: 1894 year: 2010 ident: ref_78 article-title: Biodegradable polyurethane composite scaffolds containing Bioglass® for bone tissue engineering publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2010.05.011 – volume: 13 start-page: 77 year: 2005 ident: ref_24 article-title: The biology of bone grafting publication-title: J. Am. Acad. Orthop. Surg. doi: 10.5435/00124635-200501000-00010 – volume: 49 start-page: 5603 year: 2008 ident: ref_97 article-title: Use of electrospinning technique for biomedical applications publication-title: Polymer doi: 10.1016/j.polymer.2008.09.014 – volume: 64 start-page: 18 year: 2012 ident: ref_31 article-title: Hydrogels for biomedical applications publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.010 – volume: 59 start-page: 249 year: 2016 ident: ref_49 article-title: Localised controlled release of simvastatin from porous chitosan–gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.10.014 – volume: 53 start-page: 1 year: 2000 ident: ref_85 article-title: A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive publication-title: J. Biomed. Mater. Res. doi: 10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R – volume: 14 start-page: 1809 year: 2008 ident: ref_111 article-title: Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2007.0255 – volume: 12 start-page: 824 year: 2011 ident: ref_60 article-title: Diels−Alder click cross-linked hyaluronic acid hydrogels for tissue engineering publication-title: Biomacromolecules doi: 10.1021/bm101446k – volume: 45 start-page: 115 year: 2008 ident: ref_125 article-title: Adipose-derived stem cells: Isolation, expansion and differentiation publication-title: Methods doi: 10.1016/j.ymeth.2008.03.006 – volume: 104 start-page: 1372 year: 2017 ident: ref_55 article-title: Chitosan based nanofibers in bone tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.12.046 – volume: 32 start-page: 9622 year: 2011 ident: ref_132 article-title: Biomimetic nanofibrous scaffolds for bone tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.09.009 – volume: 5 start-page: 670 year: 2009 ident: ref_50 article-title: Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2008.09.020 |
SSID | ssj0000331829 |
Score | 2.6552696 |
SecondaryResourceType | review_article |
Snippet | The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material... The term “tissue engineering”, where engineering and the life sciences are interconnected, was introduced in 1988 in the National Science Foundation workshop... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 568 |
SubjectTerms | Biological properties Biomedical materials Bones Cell adhesion & migration Chemical properties Collagen Defects Dental implants Dental materials Dentin Fractures Growth factors Immunology Life sciences Mammals Membranes Mineralization Organic chemistry Osteoblasts Regeneration (physiology) Review Stem cells Surgical implants Tissue engineering Transplants & implants |
Title | Fabrication of Scaffolds for Bone-Tissue Regeneration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30769821 https://www.proquest.com/docview/2333492127 https://www.proquest.com/docview/2201716322 https://pubmed.ncbi.nlm.nih.gov/PMC6416573 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgXOCAeFMeUxFcOEQ0jzbtCQFiQxwQ4iHtVqVNAkijHXv8f5yuK-MhjlVdpbVd-4tjfQY4wSSOKMNGRPI4I4KZgMQ6kcToyOEDqkNbdVvcRTfP4rYX9uqC26huq5zFxCpQ6zJ3NfIzxrkj0qNMng8-iJsa5U5X6xEai7BEMdM4D4873abGEnD0WJZMWUk57u7P3hVl6LahY1adz0O_wOXPHsm5pNNZg9UaLfoXU_Ouw4IpNmBljkNwE8KOyoZ14c0vrf-YK2vLvh75CEf9y7Iw5KlSrv9gXiqOaSe5Bc-d66erG1LPQiC5kGxMIi0pPq51wpQKbGATlQiuYhHzSCqJICiTPFRCcjcS0iCQEChtZCCjXIVZxrehVeCSu-BLy6PMiMRoZQVTgSOgkszgxiWhscpyD05nmknzmijczavop7hhcFpMv7TowXEjO5jSY_wpdTBTcFr_IqP0y6AeHDW30bndiYUqTDlBGVbR-WDQ8WBnao9mGQxO-KWMeiC_WaoRcMTZ3-8Ub68VgXaEKDSUfO__19qHZVw-cS3aVBxAazycmENEIOOsXblZG5Yur-_uH_Cq26OfbljdaQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ReqAcqpZnWlqCCgcO1ia2E8cHVPW1XcrjUBaJW3BiG5AgoewixJ_iN3acF0tBvXH2KLbn5Rl78g3AOh7iGGXYmAiWZIRTE5BES0GMjl18EOrIVtUW-_HgkP86io6m4K79F8aVVbY-sXLUuszdHXmPMuaA9EIqPl_-Ia5rlHtdbVto1GqxY25vMGUbbW1_R_luUNr_Mfw2IE1XAZJzQcck1iJU1motqVKBDaxUkjOV8ITFQmFWH2SCRYoL5porGjySOVIbgQl_rqIsY_jdF_CSMyZdCWHS_9nd6QQMLYTKGgUVx4PehQopmknkkFwnz71Hwey_NZkTh1z_DbxuolP_S61Ob2HKFHMwO4FZOA9RX2VXzUWfX1r_IMdtlud65GP4638tC0OGlTD93-akwrR2lAtw-CxcWoTpAqdcBl9YFmeGS6OV5VQFDvBKUIOJkgwTleUebLacSfMGmNz1xzhPMUFxXEzvuejBp472sobjeJJqpWVw2pjkKL1XIA_WumE0JvdCogpTXiMNreCD0Ml5sFTLo5sGnSHulIYeiAeS6ggcUPfDkeLstALsjjHqjQR79_9lrcLMYLi3m-5u7--8h1e4FOnKw0O-AtPjq2vzAaOfcfaxUjkfjp9bx_8CstwXuQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT90wEB6xSBUcqlIKpGUJoj1wsF5iO3F8QFVZUpYKVS1I3IIT24AECeU9VPWv8es6zsajrXrj7FFsz-YZe_INwHs8xDHKsDERLMkJpyYgiZaCGB27-CDUka2rLY7j_VN-eBadTcBD9y-MK6vsfGLtqHVVuDvyAWXMAemFmKrbtizi62768fYHcR2k3Etr106jUZEj8-snpm_DrYNdlPUHStO9k5190nYYIAUXdERiLUJlrdaSKhXYwEolOVMJT1gsFGb4QS5YpLhgrtGiweOZI7URmPwXKspzht-dhGncZ-C6JyTp5_5-J2BoLVQ2iKiMyWBwo0KKJhM5VNfxM_CvwPbP-syxAy99BS_bSNX_1KjWHEyY8jXMjuEXzkOUqvyuvfTzK-t_L3Cb1bUe-hgK-9tVachJLVj_m7mo8a0d5Rs4fRYuLcBUiVMugS8si3PDpdHKcqoCB34lqMGkSYaJygsPNjvOZEULUu56ZVxnmKw4LmaPXPRgo6e9baA5_km13DE4a81zmD0qkwfr_TAalnstUaWp7pGG1lBC6PA8WGzk0U-DjhF3SkMPxBNJ9QQOtPvpSHl1WYN3xxgBR4K9_f-y1uAFanf25eD46B3M4EqkqxQP-TJMje7uzQoGQqN8tdY4H86fW8V_A139G-Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Scaffolds+for+Bone-Tissue+Regeneration&rft.jtitle=Materials&rft.au=Chocholata%2C+Petra&rft.au=Kulda%2C+Vlastimil&rft.au=Babuska%2C+Vaclav&rft.date=2019-02-14&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=12&rft.issue=4&rft_id=info:doi/10.3390%2Fma12040568&rft_id=info%3Apmid%2F30769821&rft.externalDocID=PMC6416573 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |