Fabrication of Scaffolds for Bone-Tissue Regeneration

The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bo...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 12; no. 4; p. 568
Main Authors Chocholata, Petra, Kulda, Vlastimil, Babuska, Vaclav
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.02.2019
MDPI
Subjects
Online AccessGet full text
ISSN1996-1944
1996-1944
DOI10.3390/ma12040568

Cover

Loading…
Abstract The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bone tissue by scaffolds, providing a suitable environment for tissue regeneration and repair. Strategies and materials used in oral regenerative therapies correspond to techniques generally used in bone tissue engineering. Researchers are focusing on developing and improving new materials to imitate the native biological neighborhood as authentically as possible. The most promising is a combination of cells and matrices (scaffolds) that can be fabricated from different kinds of materials. This review summarizes currently available materials and manufacturing technologies of scaffolds for bone-tissue regeneration.
AbstractList The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bone tissue by scaffolds, providing a suitable environment for tissue regeneration and repair. Strategies and materials used in oral regenerative therapies correspond to techniques generally used in bone tissue engineering. Researchers are focusing on developing and improving new materials to imitate the native biological neighborhood as authentically as possible. The most promising is a combination of cells and matrices (scaffolds) that can be fabricated from different kinds of materials. This review summarizes currently available materials and manufacturing technologies of scaffolds for bone-tissue regeneration.
The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bone tissue by scaffolds, providing a suitable environment for tissue regeneration and repair. Strategies and materials used in oral regenerative therapies correspond to techniques generally used in bone tissue engineering. Researchers are focusing on developing and improving new materials to imitate the native biological neighborhood as authentically as possible. The most promising is a combination of cells and matrices (scaffolds) that can be fabricated from different kinds of materials. This review summarizes currently available materials and manufacturing technologies of scaffolds for bone-tissue regeneration.The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bone tissue by scaffolds, providing a suitable environment for tissue regeneration and repair. Strategies and materials used in oral regenerative therapies correspond to techniques generally used in bone tissue engineering. Researchers are focusing on developing and improving new materials to imitate the native biological neighborhood as authentically as possible. The most promising is a combination of cells and matrices (scaffolds) that can be fabricated from different kinds of materials. This review summarizes currently available materials and manufacturing technologies of scaffolds for bone-tissue regeneration.
The term “tissue engineering”, where engineering and the life sciences are interconnected, was introduced in 1988 in the National Science Foundation workshop as “the application of principles and methods of engineering and life sciences towards the fundamental understanding of structure–function relationships in normal and pathological mammalian tissues and the development of biological substitutes to restore, maintain or improve tissue function.” GBR, also called “membrane protected bone regeneration” [17], uses barrier membranes in the treatment of alveolar ridge defects and promotes bone growth into tissue defects adjacent to dental implants. The mechanical, biological and chemical properties and functions of bones depend on the irregular but optimized structure, making bone material heterogeneous and anisotropic, as can be seen at different levels (Figure 1) [18,19]. Osteoblasts, Osteocytes, Osteoclasts and Bone-Lining Cells During life, two inseparable processes—bone resorbing by osteoclasts and bone formation by osteoblasts—happen alongside remodeling of the skeleton with optimal mechanical integrity.
Author Chocholata, Petra
Babuska, Vaclav
Kulda, Vlastimil
AuthorAffiliation Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic; petra.chocholata@lfp.cuni.cz (P.C.); vlastimil.kulda@lfp.cuni.cz (V.K.)
AuthorAffiliation_xml – name: Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic; petra.chocholata@lfp.cuni.cz (P.C.); vlastimil.kulda@lfp.cuni.cz (V.K.)
Author_xml – sequence: 1
  givenname: Petra
  orcidid: 0000-0001-9519-2292
  surname: Chocholata
  fullname: Chocholata, Petra
– sequence: 2
  givenname: Vlastimil
  orcidid: 0000-0001-7926-994X
  surname: Kulda
  fullname: Kulda, Vlastimil
– sequence: 3
  givenname: Vaclav
  orcidid: 0000-0001-9296-9414
  surname: Babuska
  fullname: Babuska, Vaclav
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30769821$$D View this record in MEDLINE/PubMed
BookMark eNptkV9LwzAUxYNM3NS9-AGk4IsI1fxr0rwIOpwKA0Hnc0jbdGa0zUxawW9v3Oacw7wkcH8599xzD0GvsY0G4ATBS0IEvKoVwpDChKV7YICEYDESlPa23n0w9H4OwyEEpVgcgD6BnIkUowFIxipzJletsU1ky-glV2Vpq8JHpXXRbegVT433nY6e9Uw32i3JY7Bfqsrr4fo-Aq_ju-noIZ483T-ObiZxTjluY1ZwFOSKQmClYAlLoQQlKqUpYVxxhmDGSaIoJzTY0ZAxGmjNg7tcJVlGjsD1SnfRZbUuct20TlVy4Uyt3Ke0ysi_lca8yZn9kIwilnASBM7XAs6-d9q3sjY-11WlGm07LzGGiCNGMA7o2Q46t51rwngSE0KowAjzQJ1uO9pY-Uk0ABcrIHfWe6fLDYKg_N6Y_N1YgOEOnJt2mXCYxlT_ffkCSf2WVQ
CitedBy_id crossref_primary_10_3390_cryst14050463
crossref_primary_10_1016_j_msec_2022_112690
crossref_primary_10_3390_polym13203470
crossref_primary_10_3390_md19100551
crossref_primary_10_1016_j_ceramint_2021_11_206
crossref_primary_10_1039_D0TB02019B
crossref_primary_10_1016_j_bioactmat_2019_10_005
crossref_primary_10_3390_polym12122858
crossref_primary_10_1007_s11696_023_02786_4
crossref_primary_10_1089_3dp_2022_0216
crossref_primary_10_3390_jfb13010001
crossref_primary_10_1016_j_bone_2020_115449
crossref_primary_10_1016_j_ijpharm_2023_123093
crossref_primary_10_2478_ama_2024_0072
crossref_primary_10_3390_bioengineering7040165
crossref_primary_10_1016_j_msec_2021_112287
crossref_primary_10_1080_09205063_2021_1952382
crossref_primary_10_3390_polym14224931
crossref_primary_10_4055_jkoa_2022_57_6_447
crossref_primary_10_3390_polym14163335
crossref_primary_10_1166_jbt_2023_3279
crossref_primary_10_1177_08839115251318682
crossref_primary_10_1080_21655979_2024_2401269
crossref_primary_10_25100_iyc_v25i3_12572
crossref_primary_10_1002_term_3277
crossref_primary_10_3390_ijms25136843
crossref_primary_10_1080_15583724_2021_1896543
crossref_primary_10_1177_08853282211066246
crossref_primary_10_1021_acsami_9b20697
crossref_primary_10_18321_ectj1077
crossref_primary_10_1016_j_msec_2019_110399
crossref_primary_10_1016_j_oceram_2024_100714
crossref_primary_10_1016_j_ijbiomac_2020_04_059
crossref_primary_10_1016_j_pmatsci_2023_101087
crossref_primary_10_1007_s13346_022_01191_w
crossref_primary_10_1038_s41598_021_00024_z
crossref_primary_10_3390_polym14224807
crossref_primary_10_1080_10717544_2024_2391001
crossref_primary_10_1016_j_msec_2020_110848
crossref_primary_10_1088_1757_899X_857_1_012023
crossref_primary_10_1186_s12951_023_02115_7
crossref_primary_10_3390_antibiotics12061004
crossref_primary_10_3390_ma15010184
crossref_primary_10_4252_wjsc_v12_i9_897
crossref_primary_10_3389_fchem_2022_1051678
crossref_primary_10_1002_anbr_202000088
crossref_primary_10_1007_s13534_020_00161_w
crossref_primary_10_2147_SCCAA_S314107
crossref_primary_10_1007_s00449_024_03042_z
crossref_primary_10_3390_compounds4010005
crossref_primary_10_1007_s40964_022_00362_y
crossref_primary_10_1007_s00170_022_10334_9
crossref_primary_10_1016_j_aanat_2020_151578
crossref_primary_10_1134_S1990519X23050061
crossref_primary_10_14302_issn_2831_8846_j3dpa_20_3438
crossref_primary_10_3390_ma13163577
crossref_primary_10_1021_acs_biomac_3c00263
crossref_primary_10_3390_molecules25204802
crossref_primary_10_1208_s12249_024_02855_1
crossref_primary_10_1016_j_actbio_2020_12_032
crossref_primary_10_3390_ijms23062907
crossref_primary_10_1038_s41598_023_38146_1
crossref_primary_10_1039_D1BM01756J
crossref_primary_10_1007_s11837_023_05750_5
crossref_primary_10_1016_j_compositesb_2022_110427
crossref_primary_10_1007_s00170_021_06773_5
crossref_primary_10_3390_ijms21165719
crossref_primary_10_3390_ijms22105236
crossref_primary_10_1038_s44385_024_00002_w
crossref_primary_10_1021_acsbiomaterials_1c00920
crossref_primary_10_2174_2666145416666230228120343
crossref_primary_10_1089_ten_teb_2020_0254
crossref_primary_10_3390_coatings11080908
crossref_primary_10_3390_molecules29112498
crossref_primary_10_1080_09205063_2025_2455234
crossref_primary_10_1016_j_mtcomm_2022_104229
crossref_primary_10_3390_cells11203251
crossref_primary_10_3390_biology11050751
crossref_primary_10_1016_j_ceramint_2022_07_159
crossref_primary_10_1186_s40902_020_00263_6
crossref_primary_10_1021_acsami_4c15719
crossref_primary_10_1016_j_colsurfb_2022_112581
crossref_primary_10_1016_j_ijbiomac_2022_07_140
crossref_primary_10_1155_ijod_4990295
crossref_primary_10_1088_1748_605X_ad6ac4
crossref_primary_10_22363_2313_0245_2024_28_1_9_22
crossref_primary_10_3390_bioengineering12010046
crossref_primary_10_1016_j_msec_2021_112192
crossref_primary_10_1016_j_nxmate_2024_100187
crossref_primary_10_1016_j_cclet_2023_109197
crossref_primary_10_1007_s12257_019_0086_6
crossref_primary_10_1007_s13770_023_00577_2
crossref_primary_10_1186_s13036_021_00282_5
crossref_primary_10_4028_p_pt5cSD
crossref_primary_10_3390_ijms22179564
crossref_primary_10_1016_j_carbpol_2021_118351
crossref_primary_10_1590_0104_1428_20220121
crossref_primary_10_1007_s11665_024_10545_z
crossref_primary_10_1016_j_ceramint_2024_11_349
crossref_primary_10_35812_CelluloseChemTechnol_2022_56_33
crossref_primary_10_1016_j_cej_2024_152703
crossref_primary_10_1016_j_msec_2021_112062
crossref_primary_10_1007_s12015_023_10545_x
crossref_primary_10_1016_j_rineng_2024_101862
crossref_primary_10_1016_j_jmrt_2023_05_076
crossref_primary_10_3390_app10103451
crossref_primary_10_1016_j_compstruct_2021_114983
crossref_primary_10_3390_ijms22126387
crossref_primary_10_1016_j_jocs_2024_102314
crossref_primary_10_3390_polym16010066
crossref_primary_10_1002_chem_202004529
crossref_primary_10_3390_ma15010099
crossref_primary_10_3390_gels9020100
crossref_primary_10_1002_jbm_b_35100
crossref_primary_10_56294_mw2023148
crossref_primary_10_3390_ijms21176418
crossref_primary_10_3389_fbioe_2023_1232427
crossref_primary_10_4028_www_scientific_net_MSF_981_285
crossref_primary_10_1088_1748_605X_ac265d
crossref_primary_10_26873_SVR_1829_2024
crossref_primary_10_1007_s13770_021_00419_z
crossref_primary_10_1007_s10853_021_06718_z
crossref_primary_10_3389_fmolb_2021_682581
crossref_primary_10_1016_j_msec_2020_111634
crossref_primary_10_1016_j_compscitech_2020_108069
crossref_primary_10_1016_j_smaim_2021_07_006
crossref_primary_10_3390_app9204296
crossref_primary_10_1016_j_ijbiomac_2020_10_078
crossref_primary_10_2217_rme_2020_0086
crossref_primary_10_1016_j_engreg_2022_11_004
crossref_primary_10_3390_ijms22094454
crossref_primary_10_1016_j_eurpolymj_2020_110176
crossref_primary_10_3390_jcm9124008
crossref_primary_10_1016_j_bioadv_2022_212766
crossref_primary_10_1177_22808000241266487
crossref_primary_10_1002_cbf_3924
crossref_primary_10_1021_acs_biomac_1c01235
crossref_primary_10_1016_j_eurpolymj_2023_112168
crossref_primary_10_1021_acsbiomaterials_4c02118
crossref_primary_10_1007_s40089_020_00318_6
crossref_primary_10_3390_app9081713
crossref_primary_10_1039_D0RA04287K
crossref_primary_10_1039_D3TB01847D
crossref_primary_10_1080_09205063_2022_2068943
crossref_primary_10_1016_j_ceramint_2021_11_268
crossref_primary_10_3390_biomedicines11020325
crossref_primary_10_1016_j_msec_2019_110301
crossref_primary_10_1007_s10856_022_06676_1
crossref_primary_10_1021_acsami_0c04261
crossref_primary_10_1002_adfm_202010609
crossref_primary_10_1007_s10439_021_02752_9
crossref_primary_10_1016_j_ibiod_2023_105599
crossref_primary_10_3390_polym15020354
crossref_primary_10_1088_1361_6528_ac5017
crossref_primary_10_3389_fbioe_2021_647007
crossref_primary_10_1039_D3MA01049J
crossref_primary_10_3390_ma14010109
crossref_primary_10_1002_app_52228
crossref_primary_10_1007_s42452_020_03218_8
crossref_primary_10_1016_j_ccr_2022_214770
crossref_primary_10_3390_polym15051087
crossref_primary_10_3390_polym14163420
crossref_primary_10_1515_pac_2024_0255
crossref_primary_10_3390_polym15051082
crossref_primary_10_3390_membranes9120163
crossref_primary_10_2144_fsoa_2023_0061
crossref_primary_10_3390_bioengineering6030067
crossref_primary_10_3390_polym12040905
crossref_primary_10_1038_s41598_023_50849_z
crossref_primary_10_1016_j_bioadv_2022_212733
crossref_primary_10_1016_j_ijbiomac_2023_124258
crossref_primary_10_4028_p_c4c2s2
crossref_primary_10_3390_biomimetics5030034
crossref_primary_10_1021_acsbiomaterials_3c01105
crossref_primary_10_1080_09205063_2022_2065409
crossref_primary_10_3390_jfb15090243
crossref_primary_10_1016_j_colsurfa_2022_129886
crossref_primary_10_3390_polym12020295
crossref_primary_10_3390_polym12122806
crossref_primary_10_7759_cureus_67067
crossref_primary_10_3390_membranes14090193
crossref_primary_10_1007_s40883_024_00381_x
crossref_primary_10_1364_BOE_401740
crossref_primary_10_1016_j_ymeth_2022_10_010
crossref_primary_10_3390_ma15051900
crossref_primary_10_1002_pc_25545
crossref_primary_10_4028_www_scientific_net_KEM_900_26
crossref_primary_10_1007_s12010_023_04318_y
crossref_primary_10_1016_j_matpr_2022_12_254
crossref_primary_10_1016_j_addr_2021_114007
crossref_primary_10_3390_cells10102687
crossref_primary_10_1016_j_smaim_2021_08_002
crossref_primary_10_1038_s41526_022_00236_1
crossref_primary_10_1016_j_bprint_2024_e00364
crossref_primary_10_1038_s41598_022_26908_2
crossref_primary_10_1016_j_mtbio_2024_101410
crossref_primary_10_1088_1748_605X_acb7bd
crossref_primary_10_1051_e3sconf_202450501028
crossref_primary_10_1007_s12221_021_1243_z
crossref_primary_10_1002_jbm_b_35536
crossref_primary_10_3390_ma13071500
crossref_primary_10_1002_btpr_3234
crossref_primary_10_1016_j_jmbbm_2024_106455
crossref_primary_10_3390_ijms22020903
crossref_primary_10_3390_biomedicines10051095
crossref_primary_10_1186_s40824_019_0180_z
crossref_primary_10_1016_j_jmbbm_2021_104613
crossref_primary_10_1016_j_ijpharm_2020_120097
crossref_primary_10_3390_app11167336
crossref_primary_10_3390_polym15020275
crossref_primary_10_1002_slct_202200697
crossref_primary_10_1016_j_heliyon_2023_e18599
crossref_primary_10_1159_000503280
crossref_primary_10_36306_konjes_1198527
crossref_primary_10_1016_j_mtla_2021_101100
crossref_primary_10_1016_j_jsamd_2020_01_001
crossref_primary_10_1016_j_pmatsci_2020_100721
crossref_primary_10_1016_j_jcyt_2022_08_008
crossref_primary_10_3390_jfb14100496
crossref_primary_10_3390_mi13040528
crossref_primary_10_1080_09205063_2024_2444077
crossref_primary_10_1016_j_jsamd_2020_01_007
crossref_primary_10_1016_j_ijbiomac_2025_141114
crossref_primary_10_1016_j_colsurfb_2020_111347
crossref_primary_10_1080_09205063_2023_2170675
crossref_primary_10_3390_polym13213825
crossref_primary_10_1016_j_matpr_2023_02_278
crossref_primary_10_1002_anbr_202100116
crossref_primary_10_3390_ijms221910233
crossref_primary_10_1088_1748_605X_ad02d3
crossref_primary_10_1177_08927057231214468
crossref_primary_10_1002_app_52846
crossref_primary_10_1021_acsami_1c23017
crossref_primary_10_53365_nrfhh_175205
crossref_primary_10_1111_ijac_15084
crossref_primary_10_1016_j_jddst_2020_101978
crossref_primary_10_1016_j_bioactmat_2022_05_018
crossref_primary_10_1016_j_msec_2020_111245
crossref_primary_10_1089_ten_tec_2020_0050
crossref_primary_10_1002_jbm_a_37833
crossref_primary_10_1039_D3CP02944A
crossref_primary_10_3390_ma17030654
crossref_primary_10_1177_09544119211022988
crossref_primary_10_3390_ijms242417410
crossref_primary_10_3390_md18020123
crossref_primary_10_1007_s12034_021_02511_5
crossref_primary_10_1016_j_scitotenv_2021_149809
crossref_primary_10_3390_polym14214566
crossref_primary_10_1016_j_indcrop_2022_115979
crossref_primary_10_1016_j_bioadv_2023_213528
crossref_primary_10_1016_j_tice_2024_102390
crossref_primary_10_3390_nano10081511
crossref_primary_10_18178_ijesd_2022_13_3_1373
crossref_primary_10_1080_15476278_2021_1991743
crossref_primary_10_3389_fbioe_2020_553529
crossref_primary_10_1002_jbm_b_35060
crossref_primary_10_1111_jace_20389
crossref_primary_10_3390_ijms22063086
crossref_primary_10_1016_j_smaim_2023_04_004
crossref_primary_10_1016_j_jmbbm_2022_105275
crossref_primary_10_1007_s10904_022_02454_2
crossref_primary_10_1002_app_48522
crossref_primary_10_1002_app_50337
crossref_primary_10_1039_D4BM01099J
crossref_primary_10_1021_acs_cgd_4c01002
crossref_primary_10_1371_journal_pone_0272283
crossref_primary_10_1016_j_matdes_2024_113277
crossref_primary_10_1016_j_ijbiomac_2024_135709
crossref_primary_10_3390_life13112141
crossref_primary_10_1016_j_ijbiomac_2024_134615
crossref_primary_10_1016_j_carbpol_2021_118807
crossref_primary_10_1016_j_apsusc_2023_157051
crossref_primary_10_2217_nnm_2020_0112
crossref_primary_10_3390_jfb15060151
crossref_primary_10_3390_ma15196952
crossref_primary_10_1007_s40846_022_00751_2
crossref_primary_10_1016_j_matpr_2021_12_580
crossref_primary_10_1016_j_petrol_2022_110941
crossref_primary_10_1177_0885328221989984
crossref_primary_10_1016_j_jcms_2020_03_001
crossref_primary_10_1016_j_jnoncrysol_2023_122289
crossref_primary_10_1208_s12249_022_02419_1
crossref_primary_10_1177_24726303211020297
crossref_primary_10_1016_j_coco_2021_100747
crossref_primary_10_3390_biom9120840
crossref_primary_10_3390_mi12030287
crossref_primary_10_3390_ma15020463
crossref_primary_10_3390_ma13225303
crossref_primary_10_3390_pharmaceutics14061169
crossref_primary_10_1021_acsbiomaterials_3c01770
crossref_primary_10_15251_JOBM_2022_144_169
crossref_primary_10_3390_bioengineering7020052
crossref_primary_10_1016_j_jmrt_2020_08_042
crossref_primary_10_3390_nano9070952
crossref_primary_10_1016_j_matchemphys_2024_129821
crossref_primary_10_3390_ma13173735
crossref_primary_10_1097_MAT_0000000000001356
crossref_primary_10_1016_j_matdes_2020_109026
crossref_primary_10_3390_s21227477
crossref_primary_10_3390_pharmaceutics14020306
crossref_primary_10_1016_j_reactfunctpolym_2019_104414
crossref_primary_10_1016_j_saa_2021_119439
crossref_primary_10_1002_mabi_202100383
crossref_primary_10_3390_biology13040237
crossref_primary_10_3390_pharmaceutics14020305
crossref_primary_10_1142_S179304802331001X
crossref_primary_10_1021_acsbiomaterials_3c01956
crossref_primary_10_1007_s42995_024_00241_1
crossref_primary_10_3390_pharmaceutics14020274
crossref_primary_10_22494_cot_v9i2_128
crossref_primary_10_3390_pharmaceutics15031017
crossref_primary_10_3389_fcell_2021_661802
crossref_primary_10_1016_j_oceram_2022_100219
crossref_primary_10_3389_fbioe_2021_630488
crossref_primary_10_1016_j_jmbbm_2020_103854
crossref_primary_10_1007_s42247_024_00702_4
crossref_primary_10_3390_polym14132561
crossref_primary_10_3390_biology9120476
crossref_primary_10_1021_acsomega_1c05593
crossref_primary_10_1002_anbr_202100073
crossref_primary_10_1049_nbt2_12118
crossref_primary_10_1080_09205063_2023_2181066
crossref_primary_10_1039_D0TB02288H
crossref_primary_10_15302_J_QB_021_0253
crossref_primary_10_1016_j_eurpolymj_2019_05_010
crossref_primary_10_1016_j_micromeso_2020_110687
crossref_primary_10_3390_polym13111786
crossref_primary_10_1002_pat_5366
crossref_primary_10_3390_ijms22179335
crossref_primary_10_1016_j_heliyon_2023_e16228
crossref_primary_10_3390_polym15122601
crossref_primary_10_3390_biology12091219
crossref_primary_10_1155_2022_1953861
crossref_primary_10_20473_j_djmkg_v56_i1_p53_57
crossref_primary_10_3390_ma15186245
crossref_primary_10_1088_2631_7990_ad996d
crossref_primary_10_1016_j_mser_2025_100931
crossref_primary_10_1016_j_bprint_2022_e00244
crossref_primary_10_2174_1381612829666230320103412
crossref_primary_10_3389_fbioe_2022_987195
crossref_primary_10_1016_j_jmbbm_2022_105138
crossref_primary_10_1002_advs_202001334
crossref_primary_10_3390_biomimetics9070409
crossref_primary_10_1016_j_mattod_2025_03_009
crossref_primary_10_1016_j_eurpolymj_2024_113093
crossref_primary_10_1016_j_heliyon_2023_e18613
crossref_primary_10_1680_jemmr_23_00048
crossref_primary_10_3390_polym15193957
crossref_primary_10_2174_1574888X16666211006105915
crossref_primary_10_3390_ma13225083
crossref_primary_10_1016_j_mtbio_2023_100858
crossref_primary_10_1016_j_tice_2024_102551
crossref_primary_10_3390_fermentation10020100
crossref_primary_10_1016_j_compositesb_2019_107146
crossref_primary_10_47836_pjst_30_4_28
crossref_primary_10_1002_jbm_b_34927
crossref_primary_10_1186_s40824_020_00196_1
crossref_primary_10_1016_j_rsurfi_2024_100271
crossref_primary_10_1021_acsbiomaterials_0c00550
crossref_primary_10_3390_ijms23126574
crossref_primary_10_1007_s12038_020_00122_6
crossref_primary_10_3390_ma15072572
crossref_primary_10_1016_j_ijbiomac_2024_131874
crossref_primary_10_1080_17435889_2024_2375958
crossref_primary_10_1016_j_mtchem_2024_102258
crossref_primary_10_3390_polym15030534
crossref_primary_10_1007_s10856_021_06588_6
crossref_primary_10_3390_nano14231977
crossref_primary_10_1088_1748_605X_ad38ac
crossref_primary_10_1016_j_matdes_2021_109865
crossref_primary_10_1038_s41598_023_50664_6
crossref_primary_10_1016_j_ijbiomac_2025_139652
crossref_primary_10_1016_j_jmrt_2021_08_083
crossref_primary_10_2147_IJN_S389471
crossref_primary_10_1016_j_msec_2020_111168
crossref_primary_10_1155_2022_7900382
crossref_primary_10_1016_j_jsamd_2021_06_006
crossref_primary_10_1016_j_ijbiomac_2024_130643
crossref_primary_10_1002_mabi_202300066
crossref_primary_10_3390_pharmaceutics14020374
crossref_primary_10_1002_macp_202200282
crossref_primary_10_3390_nano12193420
crossref_primary_10_1021_acsbiomaterials_1c00620
crossref_primary_10_1002_jbm_a_37170
crossref_primary_10_1007_s10266_024_00945_x
crossref_primary_10_1016_j_mtcomm_2023_107509
crossref_primary_10_1155_2020_7593402
crossref_primary_10_1016_j_pmatsci_2023_101167
crossref_primary_10_1002_app_49797
crossref_primary_10_3390_ijms22020485
crossref_primary_10_3389_fcell_2020_614545
crossref_primary_10_1002_jcp_28876
crossref_primary_10_1186_s12938_023_01096_w
crossref_primary_10_1007_s10924_024_03264_y
crossref_primary_10_1590_s1517_707620210004_1386
crossref_primary_10_3390_ma17215305
crossref_primary_10_1002_pat_6046
crossref_primary_10_1016_j_bprint_2020_e00093
crossref_primary_10_1021_acsbiomaterials_8b01456
crossref_primary_10_3390_ma14092096
crossref_primary_10_1016_j_bioadv_2023_213578
crossref_primary_10_1016_j_mtcomm_2023_106643
crossref_primary_10_1002_app_48455
crossref_primary_10_3390_polym15061342
crossref_primary_10_1016_j_carbpol_2019_115658
Cites_doi 10.3390/ma11081478
10.1016/j.bej.2018.01.006
10.1016/j.msec.2017.05.096
10.1182/blood-2004-04-1559
10.1016/j.jiec.2016.09.021
10.1097/00002480-200209000-00003
10.1016/j.foodhyd.2005.02.019
10.1016/j.ijbiomac.2016.01.112
10.3390/ma10010029
10.1088/0957-4484/18/5/055101
10.1159/000457792
10.1002/jbm.b.30962
10.1002/jbm.a.31435
10.1089/end.1997.11.383
10.1016/j.carbpol.2012.10.028
10.1016/j.msec.2013.05.039
10.22203/eCM.v005a01
10.1016/j.memsci.2016.04.069
10.1016/j.cden.2017.06.009
10.1016/j.biomaterials.2008.12.080
10.1631/jzus.B1600118
10.1016/j.biomaterials.2012.03.076
10.1016/j.tibtech.2003.12.001
10.1016/j.biomaterials.2005.03.016
10.1155/2011/290602
10.1016/j.jconrel.2017.05.028
10.1016/j.jpor.2012.10.001
10.1007/s10856-006-0435-9
10.1155/2015/920893
10.1007/s10853-017-1807-x
10.1126/science.8493529
10.1016/S1350-4533(98)00007-1
10.1039/C7BM00315C
10.1016/j.biocel.2015.05.008
10.1146/annurev-chembioeng-061010-114257
10.3390/ma11081430
10.1016/j.memsci.2013.07.008
10.1002/jbm.b.31588
10.2225/vol3-issue2-fulltext-5
10.2174/1574888X11666160429122238
10.1016/j.biomaterials.2004.11.057
10.1088/1748-6041/3/2/022001
10.1007/s40610-015-0013-3
10.1016/j.ijbiomac.2015.09.077
10.1016/S1369-7021(11)70058-X
10.1016/j.biomaterials.2005.11.025
10.1016/j.msec.2017.04.088
10.1016/j.bone.2010.09.138
10.1016/j.nano.2016.09.008
10.4161/org.23306
10.1016/j.actbio.2009.08.041
10.15302/J-ENG-2015061
10.1016/j.biotechadv.2016.12.006
10.1016/j.actbio.2013.10.003
10.1016/j.msec.2015.07.053
10.1557/jmr.2018.159
10.1042/BSR20150025
10.1089/ten.tea.2012.0773
10.1016/j.progpolymsci.2011.06.003
10.1016/j.apsusc.2012.04.094
10.1002/jbm.b.32843
10.1016/j.jdent.2014.05.008
10.1109/IECBES.2016.7843524
10.1016/j.mattod.2013.11.017
10.1016/j.carbpol.2013.12.026
10.1016/j.biomaterials.2012.01.007
10.15283/ijsc.2010.3.2.85
10.1016/S0140-6736(99)90247-7
10.1016/j.biomaterials.2006.01.039
10.1016/j.actbio.2010.11.043
10.1016/S0142-9612(03)00030-9
10.2741/e286
10.1016/j.biomaterials.2016.01.024
10.1016/j.copbio.2016.03.014
10.2147/IJN.S163399
10.1016/j.biomaterials.2006.01.017
10.1016/j.actbio.2018.03.049
10.1016/j.biomaterials.2006.10.003
10.1161/01.RES.0000265074.83288.09
10.1016/j.actbio.2016.12.001
10.3390/ijms17121974
10.1023/B:ABME.0000017544.36001.8e
10.1116/1.4958793
10.1016/j.carbpol.2012.02.050
10.1016/j.biomaterials.2016.07.038
10.1002/jbm.a.31967
10.1002/(SICI)1097-4636(19990315)44:4<446::AID-JBM11>3.0.CO;2-F
10.1126/science.1067404
10.3390/ph10040096
10.1007/s40204-018-0100-7
10.1016/j.biotechadv.2015.12.011
10.1007/s005860100282
10.1016/j.carbpol.2016.05.049
10.3390/dj6040072
10.1016/j.carbpol.2018.01.060
10.1002/jbm.10150
10.1038/s41598-017-02962-z
10.1016/j.msec.2009.07.018
10.11138/ccmbm/2017.14.1.217
10.1016/S0142-9612(00)00280-5
10.1021/jp106488t
10.1016/j.ijbiomac.2010.03.015
10.1016/j.dental.2015.01.006
10.1016/j.drudis.2016.04.006
10.2147/IJN.S79986
10.1016/j.bej.2016.01.018
10.1016/S1369-7021(08)70086-5
10.5301/ijao.5000307
10.1016/j.biomaterials.2016.01.012
10.1016/j.jconrel.2011.09.064
10.1039/C7BM00765E
10.1016/j.actbio.2014.11.004
10.1007/s12015-018-9826-9
10.1007/s11095-010-0359-4
10.1016/j.biomaterials.2017.01.042
10.1016/j.compscitech.2010.05.011
10.5435/00124635-200501000-00010
10.1016/j.polymer.2008.09.014
10.1016/j.addr.2012.09.010
10.1016/j.msec.2015.10.014
10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R
10.1089/ten.tea.2007.0255
10.1021/bm101446k
10.1016/j.ymeth.2008.03.006
10.1016/j.ijbiomac.2016.12.046
10.1016/j.biomaterials.2011.09.009
10.1016/j.actbio.2008.09.020
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma12040568
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC6416573
30769821
10_3390_ma12040568
Genre Journal Article
Review
GrantInformation_xml – fundername: Ministerstvo Školství, Mládeže a Tělovýchovy
  grantid: National Sustainability Program I (NPU I) Nr. LO1503
GroupedDBID 29M
2WC
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c472t-6d71affdd92aa0f0f9a943a848367a7610b735a4734698e0664ffde7076ca5bb3
IEDL.DBID 8FG
ISSN 1996-1944
IngestDate Thu Aug 21 14:14:02 EDT 2025
Fri Jul 11 10:29:39 EDT 2025
Fri Jul 25 11:52:27 EDT 2025
Wed Feb 19 02:32:13 EST 2025
Tue Jul 01 03:55:58 EDT 2025
Thu Apr 24 22:54:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords stem cells
hydrogels
scaffolds
bone tissue engineering
regenerative medicine
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-6d71affdd92aa0f0f9a943a848367a7610b735a4734698e0664ffde7076ca5bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9296-9414
0000-0001-9519-2292
0000-0001-7926-994X
OpenAccessLink https://www.proquest.com/docview/2333492127?pq-origsite=%requestingapplication%
PMID 30769821
PQID 2333492127
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6416573
proquest_miscellaneous_2201716322
proquest_journals_2333492127
pubmed_primary_30769821
crossref_primary_10_3390_ma12040568
crossref_citationtrail_10_3390_ma12040568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-14
PublicationDateYYYYMMDD 2019-02-14
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-14
  day: 14
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kokubo (ref_36) 2006; 27
Balagangadharan (ref_55) 2017; 104
Yeatts (ref_120) 2011; 48
Babuska (ref_39) 2016; 11
Bakhtiar (ref_13) 2018; 7
Hoffman (ref_31) 2012; 64
Zhang (ref_71) 1999; 44
Yu (ref_72) 2010; 93
Bunnell (ref_125) 2008; 45
Chen (ref_27) 2006; 27
ref_131
ref_11
ref_130
Zhu (ref_107) 2017; 124
Turnbull (ref_42) 2018; 3
Agarwal (ref_97) 2008; 49
Pilipchuk (ref_16) 2015; 31
Skubis (ref_124) 2016; 12
Jeon (ref_94) 2013; 101B
Alford (ref_21) 2015; 65
Stevens (ref_91) 2008; 85B
Ullah (ref_29) 2015; 57
Wang (ref_22) 2017; 2
Collins (ref_61) 2013; 92
(ref_64) 2014; 10
(ref_3) 2011; 14
Asti (ref_47) 2014; 37
Dlaska (ref_4) 2015; 1
Gotman (ref_38) 1997; 11
Rezwan (ref_34) 2006; 27
Zhang (ref_68) 2012; 88
Vijayavenkataraman (ref_109) 2018; 33
Ryszkowska (ref_78) 2010; 70
Williams (ref_76) 2005; 26
Hench (ref_44) 2015; 13
Wen (ref_102) 2017; 5
Leong (ref_89) 2003; 24
Goldstein (ref_119) 2001; 22
Bose (ref_20) 2013; 16
Swetha (ref_57) 2010; 47
Gwon (ref_59) 2017; 49
Cengiz (ref_115) 2018; 132
Liu (ref_81) 2004; 32
Martin (ref_113) 2004; 22
Hospodiuk (ref_101) 2017; 35
Kaneko (ref_14) 2018; 14
Ge (ref_26) 2008; 3
Kattimani (ref_9) 2016; 7
Mygind (ref_117) 2007; 28
Egger (ref_112) 2017; 203
Fu (ref_96) 2010; 114
Roberts (ref_23) 2012; 8
Wang (ref_93) 2009; 29
Gentile (ref_49) 2016; 59
Shaunak (ref_103) 2017; 12
Lee (ref_62) 2012; 37
Ji (ref_84) 2011; 7
Chrzanowski (ref_129) 2014; 42
Albrektsson (ref_25) 2001; 10
Mandrycky (ref_105) 2016; 34
Varaprasad (ref_28) 2017; 79
Jiang (ref_80) 2018; 72
Gunatillake (ref_33) 2003; 5
Alizadeh (ref_95) 2013; 33
Zhao (ref_114) 2016; 109
Babuska (ref_41) 2015; 2015
Dash (ref_74) 2012; 158
Stratton (ref_6) 2016; 1
Hench (ref_32) 2002; 295
Gao (ref_123) 2014; 20
Watanabe (ref_70) 2007; 83A
Shi (ref_92) 2011; 28
Wang (ref_18) 2016; 83
Park (ref_53) 2017; 46
Liu (ref_43) 2017; 78
Jell (ref_45) 2006; 17
ref_58
Yu (ref_7) 2018; 53
Jung (ref_87) 2016; 514
Ciuffi (ref_121) 2017; 14
Wu (ref_51) 2010; 6
Khanarian (ref_69) 2012; 33
Saravanan (ref_52) 2016; 93
Zhu (ref_104) 2016; 40
Langer (ref_5) 1993; 260
Venugopal (ref_98) 2007; 18
Berthiaume (ref_1) 2011; 2
Sittinger (ref_56) 2005; 26
Ozbolat (ref_133) 2016; 21
Huang (ref_12) 2011; 3
Sasikumar (ref_37) 2015; 10
An (ref_99) 2015; 1
Inci (ref_100) 2018; 6
Grossen (ref_73) 2017; 260
Aggarwal (ref_126) 2005; 105
Tan (ref_30) 2009; 30
LogithKumar (ref_54) 2016; 151
Jahangirian (ref_134) 2018; 13
Hu (ref_46) 2016; 82
Gimble (ref_122) 2007; 100
Gabriel (ref_77) 2017; 13
Dhandayuthapani (ref_8) 2011; 2011
Pawar (ref_63) 2012; 33
Grayson (ref_111) 2008; 14
Suh (ref_83) 2002; 48
Holzwarth (ref_132) 2011; 32
Reena (ref_17) 2015; 10
ref_116
Bottino (ref_15) 2017; 61
ref_35
Liang (ref_86) 2013; 446
Vacanti (ref_79) 1999; 354
Mikos (ref_82) 2000; 3
Wu (ref_75) 2012; 258
Khan (ref_24) 2005; 13
Yuan (ref_88) 2017; 18
(ref_66) 2014; 103
Lien (ref_50) 2009; 5
Sikavitsas (ref_118) 2002; 62
Rho (ref_19) 1998; 20
ref_108
Lee (ref_90) 2010; 3
Zarrintaj (ref_65) 2018; 187
ref_40
Ullah (ref_127) 2015; 35
Stevens (ref_10) 2008; 11
ref_2
Nam (ref_85) 2000; 53
Barrangou (ref_67) 2006; 20
ref_48
Egusa (ref_128) 2012; 56
Jia (ref_106) 2016; 106
Tang (ref_110) 2016; 83
Nimmo (ref_60) 2011; 12
References_xml – ident: ref_11
  doi: 10.3390/ma11081478
– volume: 132
  start-page: 100
  year: 2018
  ident: ref_115
  article-title: A systematic study for optimal cell seeding and culture conditions in a perfusion mode bone-tissue bioreactor
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2018.01.006
– volume: 79
  start-page: 958
  year: 2017
  ident: ref_28
  article-title: A mini review on hydrogels classification and recent developments in miscellaneous applications
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.05.096
– volume: 105
  start-page: 1815
  year: 2005
  ident: ref_126
  article-title: Human mesenchymal stem cells modulate allogeneic immune cell responses
  publication-title: Blood
  doi: 10.1182/blood-2004-04-1559
– volume: 46
  start-page: 182
  year: 2017
  ident: ref_53
  article-title: A unique scaffold for bone tissue engineering: An osteogenic combination of graphene oxide–hyaluronic acid–chitosan with simvastatin
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.09.021
– volume: 48
  start-page: 460
  year: 2002
  ident: ref_83
  article-title: Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique
  publication-title: ASAIO J.
  doi: 10.1097/00002480-200209000-00003
– volume: 20
  start-page: 184
  year: 2006
  ident: ref_67
  article-title: Textural properties of agarose gels. I. Rheological and fracture properties
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2005.02.019
– volume: 93
  start-page: 1354
  year: 2016
  ident: ref_52
  article-title: Chitosan based biocomposite scaffolds for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.01.112
– ident: ref_108
  doi: 10.3390/ma10010029
– volume: 18
  start-page: 055101
  year: 2007
  ident: ref_98
  article-title: Biocomposite nanofibres and osteoblasts for bone tissue engineering
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/5/055101
– volume: 203
  start-page: 316
  year: 2017
  ident: ref_112
  article-title: Application of a parallelizable perfusion bioreactor for physiologic 3D cell culture
  publication-title: Cells Tissues Organs
  doi: 10.1159/000457792
– volume: 85B
  start-page: 573
  year: 2008
  ident: ref_91
  article-title: A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
  doi: 10.1002/jbm.b.30962
– volume: 83A
  start-page: 845
  year: 2007
  ident: ref_70
  article-title: Quick-forming hydroxyapatite/agarose gel composites induce bone regeneration
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.31435
– volume: 11
  start-page: 383
  year: 1997
  ident: ref_38
  article-title: Characteristics of Metals Used in Implants
  publication-title: J. Endourol.
  doi: 10.1089/end.1997.11.383
– volume: 92
  start-page: 1262
  year: 2013
  ident: ref_61
  article-title: Hyaluronic acid based scaffolds for tissue engineering—A review
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2012.10.028
– volume: 33
  start-page: 3958
  year: 2013
  ident: ref_95
  article-title: Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2013.05.039
– volume: 5
  start-page: 1
  year: 2003
  ident: ref_33
  article-title: Biodegradable synthetic polymers for tissue engineering
  publication-title: Eur. Cells Mater.
  doi: 10.22203/eCM.v005a01
– volume: 514
  start-page: 250
  year: 2016
  ident: ref_87
  article-title: Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS)
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.04.069
– volume: 61
  start-page: 689
  year: 2017
  ident: ref_15
  article-title: Advanced scaffolds for dental pulp and periodontal regeneration
  publication-title: Dent. Clin. North Am.
  doi: 10.1016/j.cden.2017.06.009
– volume: 30
  start-page: 2499
  year: 2009
  ident: ref_30
  article-title: Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.12.080
– volume: 18
  start-page: 303
  year: 2017
  ident: ref_88
  article-title: Rapid prototyping technology and its application in bone tissue engineering
  publication-title: J. Zhejiang Univ.-Sci. B
  doi: 10.1631/jzus.B1600118
– volume: 33
  start-page: 5247
  year: 2012
  ident: ref_69
  article-title: A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.03.076
– volume: 22
  start-page: 80
  year: 2004
  ident: ref_113
  article-title: The role of bioreactors in tissue engineering
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2003.12.001
– volume: 26
  start-page: 5983
  year: 2005
  ident: ref_56
  article-title: Chitosan: A versatile biopolymer for orthopaedic tissue-engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.03.016
– volume: 2011
  start-page: 1
  year: 2011
  ident: ref_8
  article-title: polymeric scaffolds in tissue engineering application: A review
  publication-title: Int. J. Polym. Sci.
  doi: 10.1155/2011/290602
– volume: 260
  start-page: 46
  year: 2017
  ident: ref_73
  article-title: PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.05.028
– volume: 56
  start-page: 229
  year: 2012
  ident: ref_128
  article-title: Stem cells in dentistry—Part II: Clinical applications
  publication-title: J. Prosthodont. Res.
  doi: 10.1016/j.jpor.2012.10.001
– volume: 17
  start-page: 997
  year: 2006
  ident: ref_45
  article-title: Gene activation by bioactive glasses
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-006-0435-9
– volume: 2015
  start-page: 1
  year: 2015
  ident: ref_41
  article-title: Comparison of fibroblast and osteoblast response to cultivation on titanium implants with different grain sizes
  publication-title: J. Nanomater.
  doi: 10.1155/2015/920893
– volume: 53
  start-page: 4734
  year: 2018
  ident: ref_7
  article-title: A three-dimensional porous hydroxyapatite nanocomposite scaffold with shape memory effect for bone tissue engineering
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1807-x
– volume: 260
  start-page: 920
  year: 1993
  ident: ref_5
  article-title: Tissue engineering
  publication-title: Science
  doi: 10.1126/science.8493529
– volume: 20
  start-page: 92
  year: 1998
  ident: ref_19
  article-title: Mechanical properties and the hierarchical structure of bone
  publication-title: Med. Eng. Phys.
  doi: 10.1016/S1350-4533(98)00007-1
– volume: 5
  start-page: 1690
  year: 2017
  ident: ref_102
  article-title: 3D printed porous ceramic scaffolds for bone tissue engineering: A review
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00315C
– volume: 65
  start-page: 20
  year: 2015
  ident: ref_21
  article-title: Extracellular matrix networks in bone remodeling
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2015.05.008
– volume: 2
  start-page: 403
  year: 2011
  ident: ref_1
  article-title: Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges
  publication-title: Annu. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-061010-114257
– ident: ref_130
  doi: 10.3390/ma11081430
– volume: 446
  start-page: 482
  year: 2013
  ident: ref_86
  article-title: Polar polymer membranes via thermally induced phase separation using a universal crystallizable diluent
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.07.008
– volume: 93
  start-page: 285
  year: 2010
  ident: ref_72
  article-title: Biodegradable poly(α-hydroxy acid) polymer scaffolds for bone tissue engineering
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
  doi: 10.1002/jbm.b.31588
– volume: 3
  start-page: 23
  year: 2000
  ident: ref_82
  article-title: Formation of highly porous biodegradable scaffolds for tissue engineering
  publication-title: Electron. J. Biotechnol.
  doi: 10.2225/vol3-issue2-fulltext-5
– volume: 12
  start-page: 225
  year: 2017
  ident: ref_103
  article-title: The role of 3D modelling and printing in orthopaedic tissue engineering: A review of the current literature
  publication-title: Curr. Stem Cell Res. Ther.
  doi: 10.2174/1574888X11666160429122238
– volume: 26
  start-page: 4817
  year: 2005
  ident: ref_76
  article-title: Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.11.057
– volume: 3
  start-page: 022001
  year: 2008
  ident: ref_26
  article-title: Manufacture of degradable polymeric scaffolds for bone regeneration
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/3/2/022001
– volume: 1
  start-page: 61
  year: 2015
  ident: ref_4
  article-title: Clinical translation in tissue engineering—The surgeon’s view
  publication-title: Curr. Mol. Biol. Rep.
  doi: 10.1007/s40610-015-0013-3
– volume: 82
  start-page: 134
  year: 2016
  ident: ref_46
  article-title: A detailed study of homogeneous agarose/hydroxyapatite nanocomposites for load-bearing bone tissue
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2015.09.077
– volume: 14
  start-page: 88
  year: 2011
  ident: ref_3
  article-title: Biomaterials & scaffolds for tissue engineering
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(11)70058-X
– volume: 27
  start-page: 2414
  year: 2006
  ident: ref_27
  article-title: 45S5 Bioglass®-derived glass–Ceramic scaffolds for bone tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.11.025
– volume: 78
  start-page: 503
  year: 2017
  ident: ref_43
  article-title: Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.04.088
– volume: 48
  start-page: 171
  year: 2011
  ident: ref_120
  article-title: Bone tissue engineering bioreactors: Dynamic culture and the influence of shear stress
  publication-title: Bone
  doi: 10.1016/j.bone.2010.09.138
– volume: 13
  start-page: 201
  year: 2017
  ident: ref_77
  article-title: Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2016.09.008
– volume: 2
  start-page: 224
  year: 2017
  ident: ref_22
  article-title: Bone grafts and biomaterials substitutes for bone defect repair: A review
  publication-title: Bioact. Mater.
– volume: 8
  start-page: 114
  year: 2012
  ident: ref_23
  article-title: Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing
  publication-title: Organogenesis
  doi: 10.4161/org.23306
– volume: 6
  start-page: 1167
  year: 2010
  ident: ref_51
  article-title: Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.08.041
– volume: 1
  start-page: 261
  year: 2015
  ident: ref_99
  article-title: Design and 3D printing of scaffolds and tissues
  publication-title: Engineering
  doi: 10.15302/J-ENG-2015061
– volume: 35
  start-page: 217
  year: 2017
  ident: ref_101
  article-title: The bioink: A comprehensive review on bioprintable materials
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2016.12.006
– volume: 10
  start-page: 798
  year: 2014
  ident: ref_64
  article-title: Oxidized dextrins as alternative crosslinking agents for polysaccharides: Application to hydrogels of agarose–chitosan
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.10.003
– volume: 57
  start-page: 414
  year: 2015
  ident: ref_29
  article-title: Classification, processing and application of hydrogels: A review
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.07.053
– volume: 33
  start-page: 1999
  year: 2018
  ident: ref_109
  article-title: Electrohydrodynamic-jetting (EHD-jet) 3D-printed functionally graded scaffolds for tissue engineering applications
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2018.159
– volume: 35
  start-page: 1
  year: 2015
  ident: ref_127
  article-title: Human mesenchymal stem cells - current trends and future prospective
  publication-title: Biosci. Rep.
  doi: 10.1042/BSR20150025
– volume: 20
  start-page: 1271
  year: 2014
  ident: ref_123
  article-title: Differentiation of human adipose-derived stem cells into neuron-like cells which are compatible with photocurable three-dimensional scaffolds
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2012.0773
– volume: 37
  start-page: 106
  year: 2012
  ident: ref_62
  article-title: Alginate: Properties and biomedical applications
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2011.06.003
– volume: 7
  start-page: 9
  year: 2016
  ident: ref_9
  article-title: Hydroxyapatite–-Past, present, and future in bone regeneration
  publication-title: Bone Tissue Regen. Insights
– volume: 258
  start-page: 7589
  year: 2012
  ident: ref_75
  article-title: Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.04.094
– volume: 101B
  start-page: 330
  year: 2013
  ident: ref_94
  article-title: Tailoring of processing parameters for sintering microsphere-based scaffolds with dense-phase carbon dioxide
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
  doi: 10.1002/jbm.b.32843
– volume: 42
  start-page: 915
  year: 2014
  ident: ref_129
  article-title: Tissue engineering in dentistry
  publication-title: Dentistry J.
  doi: 10.1016/j.jdent.2014.05.008
– ident: ref_48
  doi: 10.1109/IECBES.2016.7843524
– volume: 16
  start-page: 496
  year: 2013
  ident: ref_20
  article-title: Bone tissue engineering using 3D printing
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2013.11.017
– volume: 103
  start-page: 359
  year: 2014
  ident: ref_66
  article-title: Agarose drug delivery systems upgraded by surfactants inclusion: Critical role of the pore architecture
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2013.12.026
– volume: 33
  start-page: 3279
  year: 2012
  ident: ref_63
  article-title: Alginate derivatization: A review of chemistry, properties and applications
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.01.007
– volume: 1
  start-page: 93
  year: 2016
  ident: ref_6
  article-title: Bioactive polymeric scaffolds for tissue engineering
  publication-title: Bioact. Mater.
– volume: 3
  start-page: 85
  year: 2010
  ident: ref_90
  article-title: Solid free-form fabrication technology and its application to bone tissue engineering
  publication-title: Int. J. Stem Cells
  doi: 10.15283/ijsc.2010.3.2.85
– volume: 354
  start-page: S32
  year: 1999
  ident: ref_79
  article-title: Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation
  publication-title: Lancet
  doi: 10.1016/S0140-6736(99)90247-7
– volume: 27
  start-page: 3413
  year: 2006
  ident: ref_34
  article-title: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.039
– volume: 7
  start-page: 1653
  year: 2011
  ident: ref_84
  article-title: Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.11.043
– volume: 24
  start-page: 2363
  year: 2003
  ident: ref_89
  article-title: Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00030-9
– volume: 3
  start-page: 278
  year: 2018
  ident: ref_42
  article-title: 3D bioactive composite scaffolds for bone tissue engineering
  publication-title: Bioact. Mater.
– volume: 3
  start-page: 788
  year: 2011
  ident: ref_12
  article-title: Dental pulp and dentin tissue engineering and regeneration–advancement and challenge
  publication-title: Front. Biosci.
  doi: 10.2741/e286
– volume: 83
  start-page: 363
  year: 2016
  ident: ref_110
  article-title: Biofabrication of bone tissue: Approaches, challenges and translation for bone regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.024
– volume: 40
  start-page: 103
  year: 2016
  ident: ref_104
  article-title: 3D printing of functional biomaterials for tissue engineering
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2016.03.014
– volume: 13
  start-page: 5953
  year: 2018
  ident: ref_134
  article-title: A review of using green chemistry methods for biomaterials in tissue engineering
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S163399
– volume: 27
  start-page: 2907
  year: 2006
  ident: ref_36
  article-title: How useful is SBF in predicting in vivo bone bioactivity?
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.017
– volume: 72
  start-page: 407
  year: 2018
  ident: ref_80
  article-title: In vitro evaluation of MgSr and MgCaSr alloys via direct culture with bone marrow derived mesenchymal stem cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.03.049
– volume: 28
  start-page: 1036
  year: 2007
  ident: ref_117
  article-title: Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.10.003
– volume: 100
  start-page: 1249
  year: 2007
  ident: ref_122
  article-title: Adipose-derived stem cells for regenerative medicine
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000265074.83288.09
– volume: 49
  start-page: 284
  year: 2017
  ident: ref_59
  article-title: Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.12.001
– ident: ref_2
  doi: 10.3390/ijms17121974
– volume: 10
  start-page: 283
  year: 2015
  ident: ref_17
  article-title: Current concepts of bone regeneration in implant dentistry
  publication-title: J. Surg.
– volume: 32
  start-page: 477
  year: 2004
  ident: ref_81
  article-title: Polymeric scaffolds for bone tissue engineering
  publication-title: Ann. Biomed. Eng.
  doi: 10.1023/B:ABME.0000017544.36001.8e
– volume: 11
  start-page: 030801
  year: 2016
  ident: ref_39
  article-title: Evaluating the osseointegration of nanostructured titanium implants in animal models: Current experimental methods and perspectives (Review)
  publication-title: Biointerphases
  doi: 10.1116/1.4958793
– volume: 88
  start-page: 1445
  year: 2012
  ident: ref_68
  article-title: Synthesis and characterization of a degradable composite agarose/HA hydrogel
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2012.02.050
– volume: 106
  start-page: 58
  year: 2016
  ident: ref_106
  article-title: Direct 3D bioprinting of perfusable vascular constructs using a blend bioink
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.07.038
– ident: ref_116
  doi: 10.1002/jbm.a.31967
– volume: 44
  start-page: 446
  year: 1999
  ident: ref_71
  article-title: Poly (α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology
  publication-title: J. Biomed. Mater.
  doi: 10.1002/(SICI)1097-4636(19990315)44:4<446::AID-JBM11>3.0.CO;2-F
– volume: 295
  start-page: 1014
  year: 2002
  ident: ref_32
  article-title: Third-generation biomedical materials
  publication-title: Science
  doi: 10.1126/science.1067404
– ident: ref_35
  doi: 10.3390/ph10040096
– volume: 7
  start-page: 249
  year: 2018
  ident: ref_13
  article-title: The role of stem cell therapy in regeneration of dentine-pulp complex: A systematic review
  publication-title: Prog. Biomater.
  doi: 10.1007/s40204-018-0100-7
– volume: 34
  start-page: 422
  year: 2016
  ident: ref_105
  article-title: 3D bioprinting for engineering complex tissues
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2015.12.011
– volume: 10
  start-page: S96
  year: 2001
  ident: ref_25
  article-title: Osteoinduction, osteoconduction and osseointegration
  publication-title: Eur. Spine J.
  doi: 10.1007/s005860100282
– volume: 151
  start-page: 172
  year: 2016
  ident: ref_54
  article-title: A review of chitosan and its derivatives in bone tissue engineering
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.05.049
– ident: ref_131
  doi: 10.3390/dj6040072
– volume: 187
  start-page: 66
  year: 2018
  ident: ref_65
  article-title: Agarose-based biomaterials for tissue engineering
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.01.060
– volume: 62
  start-page: 136
  year: 2002
  ident: ref_118
  article-title: Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.10150
– ident: ref_58
  doi: 10.1038/s41598-017-02962-z
– volume: 29
  start-page: 2502
  year: 2009
  ident: ref_93
  article-title: Porous poly (lactic-co-glycolide) microsphere sintered scaffolds for tissue repair applications
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2009.07.018
– volume: 14
  start-page: 217
  year: 2017
  ident: ref_121
  article-title: Adipose stem cells for bone tissue repair
  publication-title: Clin. Cases Miner. Bone Metab.
  doi: 10.11138/ccmbm/2017.14.1.217
– volume: 22
  start-page: 1279
  year: 2001
  ident: ref_119
  article-title: Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00280-5
– volume: 114
  start-page: 18372
  year: 2010
  ident: ref_96
  article-title: Preparation and characterization of nano-hydroxyapatite/poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) composite fibers for tissue engineering
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp106488t
– volume: 47
  start-page: 1
  year: 2010
  ident: ref_57
  article-title: Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2010.03.015
– volume: 31
  start-page: 317
  year: 2015
  ident: ref_16
  article-title: Tissue engineering for bone regeneration and osseointegration in the oral cavity
  publication-title: Dent. Mater.
  doi: 10.1016/j.dental.2015.01.006
– ident: ref_40
– volume: 21
  start-page: 1257
  year: 2016
  ident: ref_133
  article-title: Application areas of 3D bioprinting
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2016.04.006
– volume: 10
  start-page: 129
  year: 2015
  ident: ref_37
  article-title: Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite–an in vitro study
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S79986
– volume: 109
  start-page: 268
  year: 2016
  ident: ref_114
  article-title: Bioreactors for tissue engineering: An update
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2016.01.018
– volume: 11
  start-page: 18
  year: 2008
  ident: ref_10
  article-title: Biomaterials for bone tissue engineering
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(08)70086-5
– volume: 37
  start-page: 187
  year: 2014
  ident: ref_47
  article-title: Natural and synthetic biodegradable polymers: Different scaffolds for cell expansion and tissue formation
  publication-title: Int. J. Artif. Organs
  doi: 10.5301/ijao.5000307
– volume: 12
  start-page: 38
  year: 2016
  ident: ref_124
  article-title: Adipose-derived stem cells: A review of osteogenesis differentiation
  publication-title: Folia Biol. Oecol.
– volume: 83
  start-page: 127
  year: 2016
  ident: ref_18
  article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.012
– volume: 158
  start-page: 15
  year: 2012
  ident: ref_74
  article-title: Poly-epsilon-caprolactone based formulations for drug delivery and tissue engineering: A review
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2011.09.064
– volume: 6
  start-page: 915
  year: 2018
  ident: ref_100
  article-title: Bioinks for 3D bioprinting: An overview
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00765E
– volume: 13
  start-page: 1
  year: 2015
  ident: ref_44
  article-title: Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.11.004
– volume: 14
  start-page: 668
  year: 2018
  ident: ref_14
  article-title: Dental pulp tissue engineering using mesenchymal stem cells: A review with a protocol
  publication-title: Stem Cell Rev. Rep.
  doi: 10.1007/s12015-018-9826-9
– volume: 28
  start-page: 1224
  year: 2011
  ident: ref_92
  article-title: Sintered microsphere scaffolds for controlled release and tissue engineering
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-010-0359-4
– volume: 124
  start-page: 106
  year: 2017
  ident: ref_107
  article-title: Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.01.042
– volume: 70
  start-page: 1894
  year: 2010
  ident: ref_78
  article-title: Biodegradable polyurethane composite scaffolds containing Bioglass® for bone tissue engineering
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2010.05.011
– volume: 13
  start-page: 77
  year: 2005
  ident: ref_24
  article-title: The biology of bone grafting
  publication-title: J. Am. Acad. Orthop. Surg.
  doi: 10.5435/00124635-200501000-00010
– volume: 49
  start-page: 5603
  year: 2008
  ident: ref_97
  article-title: Use of electrospinning technique for biomedical applications
  publication-title: Polymer
  doi: 10.1016/j.polymer.2008.09.014
– volume: 64
  start-page: 18
  year: 2012
  ident: ref_31
  article-title: Hydrogels for biomedical applications
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.09.010
– volume: 59
  start-page: 249
  year: 2016
  ident: ref_49
  article-title: Localised controlled release of simvastatin from porous chitosan–gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.10.014
– volume: 53
  start-page: 1
  year: 2000
  ident: ref_85
  article-title: A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R
– volume: 14
  start-page: 1809
  year: 2008
  ident: ref_111
  article-title: Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2007.0255
– volume: 12
  start-page: 824
  year: 2011
  ident: ref_60
  article-title: Diels−Alder click cross-linked hyaluronic acid hydrogels for tissue engineering
  publication-title: Biomacromolecules
  doi: 10.1021/bm101446k
– volume: 45
  start-page: 115
  year: 2008
  ident: ref_125
  article-title: Adipose-derived stem cells: Isolation, expansion and differentiation
  publication-title: Methods
  doi: 10.1016/j.ymeth.2008.03.006
– volume: 104
  start-page: 1372
  year: 2017
  ident: ref_55
  article-title: Chitosan based nanofibers in bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.12.046
– volume: 32
  start-page: 9622
  year: 2011
  ident: ref_132
  article-title: Biomimetic nanofibrous scaffolds for bone tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.09.009
– volume: 5
  start-page: 670
  year: 2009
  ident: ref_50
  article-title: Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2008.09.020
SSID ssj0000331829
Score 2.6552696
SecondaryResourceType review_article
Snippet The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material...
The term “tissue engineering”, where engineering and the life sciences are interconnected, was introduced in 1988 in the National Science Foundation workshop...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 568
SubjectTerms Biological properties
Biomedical materials
Bones
Cell adhesion & migration
Chemical properties
Collagen
Defects
Dental implants
Dental materials
Dentin
Fractures
Growth factors
Immunology
Life sciences
Mammals
Membranes
Mineralization
Organic chemistry
Osteoblasts
Regeneration (physiology)
Review
Stem cells
Surgical implants
Tissue engineering
Transplants & implants
Title Fabrication of Scaffolds for Bone-Tissue Regeneration
URI https://www.ncbi.nlm.nih.gov/pubmed/30769821
https://www.proquest.com/docview/2333492127
https://www.proquest.com/docview/2201716322
https://pubmed.ncbi.nlm.nih.gov/PMC6416573
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgXOCAeFMeUxFcOEQ0jzbtCQFiQxwQ4iHtVqVNAkijHXv8f5yuK-MhjlVdpbVd-4tjfQY4wSSOKMNGRPI4I4KZgMQ6kcToyOEDqkNbdVvcRTfP4rYX9uqC26huq5zFxCpQ6zJ3NfIzxrkj0qNMng8-iJsa5U5X6xEai7BEMdM4D4873abGEnD0WJZMWUk57u7P3hVl6LahY1adz0O_wOXPHsm5pNNZg9UaLfoXU_Ouw4IpNmBljkNwE8KOyoZ14c0vrf-YK2vLvh75CEf9y7Iw5KlSrv9gXiqOaSe5Bc-d66erG1LPQiC5kGxMIi0pPq51wpQKbGATlQiuYhHzSCqJICiTPFRCcjcS0iCQEChtZCCjXIVZxrehVeCSu-BLy6PMiMRoZQVTgSOgkszgxiWhscpyD05nmknzmijczavop7hhcFpMv7TowXEjO5jSY_wpdTBTcFr_IqP0y6AeHDW30bndiYUqTDlBGVbR-WDQ8WBnao9mGQxO-KWMeiC_WaoRcMTZ3-8Ub68VgXaEKDSUfO__19qHZVw-cS3aVBxAazycmENEIOOsXblZG5Yur-_uH_Cq26OfbljdaQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ReqAcqpZnWlqCCgcO1ia2E8cHVPW1XcrjUBaJW3BiG5AgoewixJ_iN3acF0tBvXH2KLbn5Rl78g3AOh7iGGXYmAiWZIRTE5BES0GMjl18EOrIVtUW-_HgkP86io6m4K79F8aVVbY-sXLUuszdHXmPMuaA9EIqPl_-Ia5rlHtdbVto1GqxY25vMGUbbW1_R_luUNr_Mfw2IE1XAZJzQcck1iJU1motqVKBDaxUkjOV8ITFQmFWH2SCRYoL5porGjySOVIbgQl_rqIsY_jdF_CSMyZdCWHS_9nd6QQMLYTKGgUVx4PehQopmknkkFwnz71Hwey_NZkTh1z_DbxuolP_S61Ob2HKFHMwO4FZOA9RX2VXzUWfX1r_IMdtlud65GP4638tC0OGlTD93-akwrR2lAtw-CxcWoTpAqdcBl9YFmeGS6OV5VQFDvBKUIOJkgwTleUebLacSfMGmNz1xzhPMUFxXEzvuejBp472sobjeJJqpWVw2pjkKL1XIA_WumE0JvdCogpTXiMNreCD0Ml5sFTLo5sGnSHulIYeiAeS6ggcUPfDkeLstALsjjHqjQR79_9lrcLMYLi3m-5u7--8h1e4FOnKw0O-AtPjq2vzAaOfcfaxUjkfjp9bx_8CstwXuQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT90wEB6xSBUcqlIKpGUJoj1wsF5iO3F8QFVZUpYKVS1I3IIT24AECeU9VPWv8es6zsajrXrj7FFsz-YZe_INwHs8xDHKsDERLMkJpyYgiZaCGB27-CDUka2rLY7j_VN-eBadTcBD9y-MK6vsfGLtqHVVuDvyAWXMAemFmKrbtizi62768fYHcR2k3Etr106jUZEj8-snpm_DrYNdlPUHStO9k5190nYYIAUXdERiLUJlrdaSKhXYwEolOVMJT1gsFGb4QS5YpLhgrtGiweOZI7URmPwXKspzht-dhGncZ-C6JyTp5_5-J2BoLVQ2iKiMyWBwo0KKJhM5VNfxM_CvwPbP-syxAy99BS_bSNX_1KjWHEyY8jXMjuEXzkOUqvyuvfTzK-t_L3Cb1bUe-hgK-9tVachJLVj_m7mo8a0d5Rs4fRYuLcBUiVMugS8si3PDpdHKcqoCB34lqMGkSYaJygsPNjvOZEULUu56ZVxnmKw4LmaPXPRgo6e9baA5_km13DE4a81zmD0qkwfr_TAalnstUaWp7pGG1lBC6PA8WGzk0U-DjhF3SkMPxBNJ9QQOtPvpSHl1WYN3xxgBR4K9_f-y1uAFanf25eD46B3M4EqkqxQP-TJMje7uzQoGQqN8tdY4H86fW8V_A139G-Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Scaffolds+for+Bone-Tissue+Regeneration&rft.jtitle=Materials&rft.au=Chocholata%2C+Petra&rft.au=Kulda%2C+Vlastimil&rft.au=Babuska%2C+Vaclav&rft.date=2019-02-14&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=12&rft.issue=4&rft_id=info:doi/10.3390%2Fma12040568&rft_id=info%3Apmid%2F30769821&rft.externalDocID=PMC6416573
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon