The competition number of the complement of a cycle

In this paper, we compute the competition number of the complement of a cycle. It is well-known that the competition number of a cycle of length at least 4 is two while the competition number of a cycle of length 3 is one. Characterizing a graph by its competition number has been one of important re...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Applied Mathematics Vol. 161; no. 12; pp. 1755 - 1760
Main Authors Kim, Suh-Ryung, Park, Boram, Sano, Yoshio
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we compute the competition number of the complement of a cycle. It is well-known that the competition number of a cycle of length at least 4 is two while the competition number of a cycle of length 3 is one. Characterizing a graph by its competition number has been one of important research problems in the study of competition graphs, and competition numbers of various interesting families of graphs have been found. We thought that it is worthy of computing the competition number of the complement of a cycle. In the meantime, the observation that the complement of an odd cycle of length at least 5 is isomorphic to a circulant graph led us to compute the competition number of a large family of circulant graphs. In fact, those circulant graphs satisfy the long lasting Opsut’s conjecture stating that the competition number of a locally cobipartite graph is at most two.
AbstractList In this paper, we compute the competition number of the complement of a cycle. It is well-known that the competition number of a cycle of length at least 4 is two while the competition number of a cycle of length 3 is one. Characterizing a graph by its competition number has been one of important research problems in the study of competition graphs, and competition numbers of various interesting families of graphs have been found. We thought that it is worthy of computing the competition number of the complement of a cycle. In the meantime, the observation that the complement of an odd cycle of length at least 5 is isomorphic to a circulant graph led us to compute the competition number of a large family of circulant graphs. In fact, those circulant graphs satisfy the long lasting Opsut’s conjecture stating that the competition number of a locally cobipartite graph is at most two.
In this paper, we compute the competition number of the complement of a cycle. It is well-known that the competition number of a cycle of length at least 4 is two while the competition number of a cycle of length 3 is one. Characterizing a graph by its competition number has been one of important research problems in the study of competition graphs, and competition numbers of various interesting families of graphs have been found. We thought that it is worthy of computing the competition number of the complement of a cycle. In the meantime, the observation that the complement of an odd cycle of length at least 5 is isomorphic to a circulant graph led us to compute the competition number of a large family of circulant graphs. In fact, those circulant graphs satisfy the long lasting Opsutas conjecture stating that the competition number of a locally cobipartite graph is at most two.
Author Park, Boram
Kim, Suh-Ryung
Sano, Yoshio
Author_xml – sequence: 1
  givenname: Suh-Ryung
  surname: Kim
  fullname: Kim, Suh-Ryung
  organization: Department of Mathematics Education, Seoul National University, Seoul 151-742, Republic of Korea
– sequence: 2
  givenname: Boram
  surname: Park
  fullname: Park, Boram
  email: borampark22@gmail.com
  organization: Department of Mathematics Education, Seoul National University, Seoul 151-742, Republic of Korea
– sequence: 3
  givenname: Yoshio
  surname: Sano
  fullname: Sano, Yoshio
  organization: National Institute of Informatics, Tokyo 101-8430, Japan
BookMark eNqFkE1Lw0AQhhepYFv9Ad5y9JK4X9m0eJLiFxS8VPC2bCazuCXJ1t1E6L93Q3vW0_DOPO8w8y7IrPc9EnLLaMEoU_f7ojFdwSljSRdUyAsyZ6uK56qq2IzME6NyzlafV2QR455SypKaE7H7wgx8d8DBDc73WT92NYbM22w4T1rssB-mjsngCC1ek0tr2og357okH89Pu81rvn1_eds8bnOQFR9yJayoQNq6BAVYpwvqeoUSG94YoFRUBpkoa9OU0FhhwUghSkRm1hwUt7VYkrvT3kPw3yPGQXcuArat6dGPUbOSCSkplfx_VFRcSb5WE8pOKAQfY0CrD8F1Jhw1o3rKUu91ylJPWU6tlGXyPJw8mN79cRh0BIc9YOMCwqAb7_5w_wLtn32R
CitedBy_id crossref_primary_10_1007_s00373_012_1188_5
crossref_primary_10_4236_ojdm_2017_71002
crossref_primary_10_4236_ojdm_2017_72006
crossref_primary_10_1016_j_dam_2018_06_025
crossref_primary_10_1016_j_dam_2015_07_021
crossref_primary_10_1007_s00026_013_0207_4
crossref_primary_10_1515_math_2021_0047
Cites_doi 10.1016/0166-218X(83)90086-0
10.7151/dmgt.1506
10.1137/0603043
10.4134/JKMS.2011.48.4.691
10.1016/j.dam.2008.04.009
10.1016/j.disc.2009.06.016
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright_xml – notice: 2011 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.dam.2011.10.034
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 1760
ExternalDocumentID 10_1016_j_dam_2011_10_034
S0166218X11004173
GroupedDBID -~X
6I.
AAFTH
ADEZE
AFTJW
AI.
ALMA_UNASSIGNED_HOLDINGS
FA8
FDB
OAUVE
VH1
WUQ
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c472t-63f37c4fb5c6ceb016bb8e4ed2dac0037ae135bad5cdf3fca4335ee1a92c62fb3
IEDL.DBID ABVKL
ISSN 0166-218X
IngestDate Fri Aug 16 00:57:05 EDT 2024
Fri Aug 16 23:53:53 EDT 2024
Fri Aug 23 01:40:32 EDT 2024
Sat Apr 29 22:45:09 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Circulant graph
Competition number
Edge clique cover
Competition graph
The complement of a cycle
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-63f37c4fb5c6ceb016bb8e4ed2dac0037ae135bad5cdf3fca4335ee1a92c62fb3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0166218X11004173
PQID 1372642962
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1513440042
proquest_miscellaneous_1372642962
crossref_primary_10_1016_j_dam_2011_10_034
elsevier_sciencedirect_doi_10_1016_j_dam_2011_10_034
PublicationCentury 2000
PublicationDate August 2013
2013-08-00
20130801
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: August 2013
PublicationDecade 2010
PublicationTitle Discrete Applied Mathematics
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Godsil, Royle (br000010) 2001
Lundgren, Maybee (br000030) 1983; 6
Opsut (br000035) 1982; 3
Park, Kim, Sano (br000045) 2009; 309
Kim, Park, Sano (br000020) 2010; 30
Sano (br000060) 2009; 198
B. Park, S.-R. Kim, Y. Sano, On competition numbers of complete multipartite graphs with partite sets of equal size, Preprint RIMS-1644, October 2008.
Park, Sano (br000050) 2011; 48
.
Kim, Sano (br000025) 2008; 156
J.E. Cohen, Interval graphs and food webs: a finding and a problem, Document 17696-PR, RAND Corporation, Santa Monica, CA, 1968.
Kim (br000015) 1993; vol. 55
Roberts (br000055) 1978
Godsil (10.1016/j.dam.2011.10.034_br000010) 2001
10.1016/j.dam.2011.10.034_br000005
Kim (10.1016/j.dam.2011.10.034_br000020) 2010; 30
Roberts (10.1016/j.dam.2011.10.034_br000055) 1978
10.1016/j.dam.2011.10.034_br000040
Kim (10.1016/j.dam.2011.10.034_br000025) 2008; 156
Lundgren (10.1016/j.dam.2011.10.034_br000030) 1983; 6
Sano (10.1016/j.dam.2011.10.034_br000060) 2009; 198
Kim (10.1016/j.dam.2011.10.034_br000015) 1993; vol. 55
Park (10.1016/j.dam.2011.10.034_br000045) 2009; 309
Park (10.1016/j.dam.2011.10.034_br000050) 2011; 48
Opsut (10.1016/j.dam.2011.10.034_br000035) 1982; 3
References_xml – volume: vol. 55
  start-page: 313
  year: 1993
  end-page: 326
  ident: br000015
  article-title: The competition number and its variants
  publication-title: Quo Vadis, Graph Theory?
  contributor:
    fullname: Kim
– volume: 198
  start-page: 211
  year: 2009
  end-page: 219
  ident: br000060
  article-title: The competition numbers of regular polyhedra
  publication-title: Congressus Numerantium
  contributor:
    fullname: Sano
– start-page: 477
  year: 1978
  end-page: 490
  ident: br000055
  article-title: Food webs, competition graphs, and the boxicity of ecological phase space
  publication-title: Theory and Applications of Graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich. 1976)
  contributor:
    fullname: Roberts
– volume: 156
  start-page: 3522
  year: 2008
  end-page: 3524
  ident: br000025
  article-title: The competition numbers of complete tripartite graphs
  publication-title: Discrete Applied Mathematics
  contributor:
    fullname: Sano
– year: 2001
  ident: br000010
  article-title: Algebraic Graph Theory
  contributor:
    fullname: Royle
– volume: 6
  start-page: 319
  year: 1983
  end-page: 322
  ident: br000030
  article-title: A characterization of graphs of competition number
  publication-title: Discrete Applied Mathematics
  contributor:
    fullname: Maybee
– volume: 309
  start-page: 6464
  year: 2009
  end-page: 6469
  ident: br000045
  article-title: The competition numbers of complete multipartite graphs and mutually orthogonal Latin squares
  publication-title: Discrete Mathematics
  contributor:
    fullname: Sano
– volume: 3
  start-page: 420
  year: 1982
  end-page: 428
  ident: br000035
  article-title: On the computation of the competition number of a graph
  publication-title: SIAM Journal on Algebraic and Discrete Methods
  contributor:
    fullname: Opsut
– volume: 30
  start-page: 449
  year: 2010
  end-page: 459
  ident: br000020
  article-title: The competition numbers of Johnson graphs
  publication-title: Discussiones Mathematicae Graph Theory
  contributor:
    fullname: Sano
– volume: 48
  start-page: 691
  year: 2011
  end-page: 702
  ident: br000050
  article-title: The competition numbers of Hamming graphs with diameter at most three
  publication-title: Journal of the Korean Mathematical Society
  contributor:
    fullname: Sano
– volume: 6
  start-page: 319
  year: 1983
  ident: 10.1016/j.dam.2011.10.034_br000030
  article-title: A characterization of graphs of competition number m
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/0166-218X(83)90086-0
  contributor:
    fullname: Lundgren
– volume: 30
  start-page: 449
  year: 2010
  ident: 10.1016/j.dam.2011.10.034_br000020
  article-title: The competition numbers of Johnson graphs
  publication-title: Discussiones Mathematicae Graph Theory
  doi: 10.7151/dmgt.1506
  contributor:
    fullname: Kim
– volume: 3
  start-page: 420
  year: 1982
  ident: 10.1016/j.dam.2011.10.034_br000035
  article-title: On the computation of the competition number of a graph
  publication-title: SIAM Journal on Algebraic and Discrete Methods
  doi: 10.1137/0603043
  contributor:
    fullname: Opsut
– volume: 198
  start-page: 211
  year: 2009
  ident: 10.1016/j.dam.2011.10.034_br000060
  article-title: The competition numbers of regular polyhedra
  publication-title: Congressus Numerantium
  contributor:
    fullname: Sano
– year: 2001
  ident: 10.1016/j.dam.2011.10.034_br000010
  contributor:
    fullname: Godsil
– start-page: 477
  year: 1978
  ident: 10.1016/j.dam.2011.10.034_br000055
  article-title: Food webs, competition graphs, and the boxicity of ecological phase space
  contributor:
    fullname: Roberts
– volume: vol. 55
  start-page: 313
  year: 1993
  ident: 10.1016/j.dam.2011.10.034_br000015
  article-title: The competition number and its variants
  contributor:
    fullname: Kim
– ident: 10.1016/j.dam.2011.10.034_br000005
– volume: 48
  start-page: 691
  year: 2011
  ident: 10.1016/j.dam.2011.10.034_br000050
  article-title: The competition numbers of Hamming graphs with diameter at most three
  publication-title: Journal of the Korean Mathematical Society
  doi: 10.4134/JKMS.2011.48.4.691
  contributor:
    fullname: Park
– ident: 10.1016/j.dam.2011.10.034_br000040
– volume: 156
  start-page: 3522
  year: 2008
  ident: 10.1016/j.dam.2011.10.034_br000025
  article-title: The competition numbers of complete tripartite graphs
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/j.dam.2008.04.009
  contributor:
    fullname: Kim
– volume: 309
  start-page: 6464
  year: 2009
  ident: 10.1016/j.dam.2011.10.034_br000045
  article-title: The competition numbers of complete multipartite graphs and mutually orthogonal Latin squares
  publication-title: Discrete Mathematics
  doi: 10.1016/j.disc.2009.06.016
  contributor:
    fullname: Park
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.1135197
Snippet In this paper, we compute the competition number of the complement of a cycle. It is well-known that the competition number of a cycle of length at least 4 is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 1755
SubjectTerms Circulant graph
Competition
Competition graph
Competition number
Complement
Computation
Edge clique cover
Graphs
Mathematical models
The complement of a cycle
Title The competition number of the complement of a cycle
URI https://dx.doi.org/10.1016/j.dam.2011.10.034
https://search.proquest.com/docview/1372642962
https://search.proquest.com/docview/1513440042
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELb6WMqAeIryqILEhBTa-BUytoiqpbQLFHWzbMeWikRa0XRg4bdzzoOXRAemSJfEcb5c7k6-83cIXcSRlOBXuc9t4NKMJPQjqYjPQwnO79pQ2nF7h8cTPpjSuxmbVdBNuRfGlVUWtj-36Zm1LiTtAs32cj5vP0CwwsFBzTLSsyAkVVTHEP3C31nv9p5G999YpBxFWqNcd_lKM4C7pQX5N_fdUGXaMysAi-VLTvHpqr8I_ctx_TLhmV_q76DtIqD0uvmcd1HFJHtoa_zJxrraRwR0wdNZgJwVaHl5GxBvYb20OJMXkTuJ9PQbDHSApv3bx5uBXzRL8DUNcepzYkmoqVVMc20UvIJSALWJcSy1Y5mRJiBMyZjp2BKrJSWEGRPICGuOrSKHqJYsEnOEPBax0LEXB4ZFNOzYyEKQwbMFD9eUOmqiyxIJscw5MURZLPYsADbhYHMigK2JaImV-PFhBdjsTbedl7gKUHiXxZCJWaxXAtQJgjgccbzhGhYQ6qwTPv7f409QA2d9L1yl3ymqpa9rcwbRR6paqHr1HrQKHXPH4WgwAelw1vsA21vV8A
link.rule.ids 315,783,787,3513,4509,24128,27581,27936,27937,45597,45675,45691,45886
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGSgD4inKM0hMSKFN_AgeUUVVoO1CK3WzbMeWikRa0XRg4bdzdhJeEh1YncSJv5zuTr7P3yF0mXIpIa6ykNnIlRlxEnKpcMgSCcHvxhDSdmeHB0PWG5OHCZ3UUKc6C-NolaXvL3y699blSKtEszWfTltPkKwwCFATL3oWJXgNrROXH4NRX79H3zSknEBao9p1-SoyQLAlpfQ3C91EVdHT079S-VIIfDruFyZ_ha1fDtxHpe422irTyeC2-OIdVDPZLtocfGqxLvYQBksItE-PPT0rKJqABDMb5OWVgkLuRmSg32CifTTu3o06vbBslRBqksR5yLDFiSZWUc20UbAEpQBok8ap1E5jRpoIUyVTqlOLrZYEY2pMJHmsWWwVPkD1bJaZQxRQThOnXRwZyknSttxCisH8dodrSc2b6KpCQswLRQxRUcWeBcAmHGxuCGBrIlJhJX78VgEee9VjFxWuAszd1TBkZmbLhQBjghQu5ixecQ-NMHG-KT763-vP0UZvNOiL_v3w8Rg1Yt8Bw3H-TlA9f12aU8hDcnXm7ewD_avUJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+competition+number+of+the+complement+of+a+cycle&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Kim%2C+Suh-Ryung&rft.au=Park%2C+Boram&rft.au=Sano%2C+Yoshio&rft.date=2013-08-01&rft.issn=0166-218X&rft.volume=161&rft.issue=12&rft.spage=1755&rft.epage=1760&rft_id=info:doi/10.1016%2Fj.dam.2011.10.034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon